
Discovery of new particles
is not usually associated

with condensed matter
physics, because, at one
level, we already know all
the particles that go into the
Hamiltonian—namely, elec-
trons and ions. But it is a
most profound fact of
nature—indeed the very rea-
son why physics can make
progress at many different
levels—that strongly inter-
acting particles reorganize themselves to become more
weakly coupled particles of a new kind. Often they are
simple bound states of the old particles. But sometimes
they are fantastically complicated collective objects (for
example, solitons) that nonetheless behave as legitimate
particles, with well-defined charge, spin, statistics, and
other properties we attribute to particles.

These new particles are, in a sense, the true particles
of the system in question, because it is reasonable to
reserve the title “particle” for nearly independent objects.
Once we have identified the true particles of a system,
phenomena that were difficult or impossible to under-
stand in terms of the old particles become simply compre-
hensible as properties of almost free particles. That is why
condensed matter systems are often described in terms of
phonons, magnons, Landau quasiparticles, or Cooper
pairs, rather than electrons and ions.

This article concerns electrons confined to two dimen-
sions. Such a system can be realized, for example, at the
interface between two semiconductors. In strong trans-
verse magnetic fields at sufficiently low temperature,
such systems exhibit absolutely marvelous properties
that are entirely unexpected and inexplicable when one
thinks of them simply as a collection of weakly interacting
electrons.

So, what are the true particles of this two-dimensional
electron system? It happens that the electrons effectively
“swallow” all or a substantial fraction of the external mag-
netic field, thus transforming themselves into particles that
are called “composite fermions.”1,2 Numerous properties of
these composite fermions and the quantum fluids they form
have been established in the last decade:3 Experimenters
have observed their Fermi sea, their Shubnikov–de Haas
oscillations, their cyclotron orbits, and their quantized Lan-
dau levels. They have measured the particles’ charge, spin,
statistics, mass, magnetic moment, and thermopower. In
mesoscopic experiments, the composite fermions have been
bounced around like billiard balls.

Not only has the composite fermion helped explain

and predict remarkable phe-
nomena. It has also provided
the motivation for a micro-
scopic theory that is practi-
cally exact without requiring
new parameters. It is impos-
sible, in this limited space, to
do justice to the growing
body of work in the field. So
this article concentrates only
on some of the most basic
facts, pointing the interested
reader to review articles or

the most recent papers for further information.

The quantum Hall effects
In the presence of a strong magnetic field B transverse to
a two-dimensional system of electrons, the tiny cyclotron
orbits of an electron are quantized to produce discrete
kinetic energy levels, called “Landau levels.” (See figure
1.) The degeneracy of each Landau level—that is to say,
its maximum population per unit area—is B/v0, where v0
= h/e is the elementary quantum of magnetic flux. This
degeneracy implies that the number of occupied Landau
levels, called the filling factor, is n = rv0 /B, where r is the
two-dimensional electron density. The integral quantum
Hall effect, which is manifested by the development of
spectacularly flat plateaus in the Hall conductance centered
at integral values of n, was discovered in 1980 by Klaus von
Klitzing. (See PHYSICS TODAY, December 1985, page 17.)

In a sufficiently strong magnetic field, when n is less
than 1, all the electrons can be accommodated in the low-
est Landau level and, to good approximation, one can neg-
lect any mixing between Landau levels. The kinetic ener-
gy is then an irrelevant constant, and the Hamiltonian is
simply given by the Coulomb potential of the electron
assemblage:

(1)

The ultimate goal of theory is to solve the Schrödinger
equation, HC = EC, as a function of n in the Hilbert space
of the lowest Landau-level states. Considering that we are
dealing with a macroscopic system of interacting elec-
trons, it should come as no surprise that we don’t know
the exact solution. To make matters worse, the standard
approximate perturbative strategies are doomed by the
absence of any small parameter, because the interaction
energy is the only energy scale in the problem. Nonethe-
less, a trail of experimental clues has guided us to wave-
functions that are accurate and faithful representations of
the exact eigenstates.

These wavefunctions reveal the simple physics of the
problem, namely the formation of the composite fermion.
The composite fermion was originally introduced to
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explain the fractional quantum Hall effect, discovered in
1982 by Daniel Tsui, Horst Stormer, and Arthur Gossard
at simple fractional values of n. (See PHYSICS TODAY,
December 1998, page 17.) But subsequent work has
shown that it describes a superstructure that encompass-
es other phenomena as well.

The quickest way to introduce the composite fermion
is through the following series of steps, which I call the
“Bohr theory” of composite fermions because it obtains
some of the essential results with the help of an over-
simpified but useful picture. The outcome is that strongly
interacting electrons in a strong magnetic field B trans-
form into weakly interacting composite fermions in a
weaker effective magnetic field B*, given by

B* = B –2prv0 , (2)

where 2p is an even integer. Equivalently, one can say
that electrons at filling factor n convert into composite
fermions with filling factor n* = rv0 /+B*+, given by

(3)

The minus sign corresponds to situations when B* points
antiparallel to B.

Start by considering interacting electrons in the
transverse magnetic field B. Now attach to each electron
an infinitely thin, massless magnetic solenoid carrying 2p
flux quanta pointing antiparallel to B, turning it into a
composite fermion. Such a conversion preserves the
minus sign associated with an exchange of two fermions,
because the bound state of an electron and an even num-
ber of flux quanta is itself a fermion. Hence the name. It
also leaves the Aharonov–Bohm phase factors associated
with all closed paths unchanged, because the additional
phase factor due to a flux v = 2pv0 is exp{2piv/v0} = 1. In
other words, the attached flux is unobservable, and the
new problem, formulated in terms of composite fermions,
is identical to the one with which we began.

So, what have we gained? Well, a “mean-field approx-
imation” now suggests itself, in which the new attached
magnetic field is smeared to produce an additional uni-

form magnetic field ⊗ 2prv0. With that addition, we get
the net magnetic field B* of equation 2. The net effect, in
a sense, is that each electron has absorbed 2p flux quanta
from the external field to become a composite fermion that
experiences only the residual magnetic field B*. (See figure 2.)

The crucial point is that the many-particle ground
state of electrons at n < 1 was highly degenerate in the
absence of interaction, with all lowest Landau level con-
figurations having the same energy. But now, the degen-
eracy of the composite-fermion ground state at the corre-
sponding n* > 1 is drastically smaller, even when the inter-
action between composite fermions is switched off. For
integral values of n*, in fact, one gets a non-degenerate
ground state.

The reduced degeneracy suggests that one might
start by treating the composite fermions as independent.
In that approximation, the composite fermions fill a Fermi
sea of their own whenever B* vanishes (1/n = 2p), and form
composite-fermion Landau levels when it does not. All of
this action, of course, takes place inside the lowest elec-
tronic Landau level, as shown in figure 1.

Having identified interacting electrons at filling fac-
tor n with independent composite fermions at n*, we write
the (unnormalized) microscopic wavefunctions for inter-
acting electrons at a given n as:

(4)

where zj = xj ⊗iyj denotes the position of the jth electron as
a complex number, and Fn* are the known Slater-determi-
nant wavefunctions for non-interacting electrons at the
corresponding n*. For simplicity, we have assumed that
the electron population is fully polarized and we have sup-
pressed the spin part of the wavefunction.

The wavefunctions Cn , which turn out to be extreme-
ly accurate approximations of the actual electron eigen-
states, give a precise meaning to the intuitive physics of
our composite-fermion discussion. The factors in the prod-
uct over all electrons in equation 4 tell us that every elec-
tron sees 2p vortices at every other electron. That is to
say, as the jth electron executes a closed path around the
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FIGURE 1. EVOLUTION OF A TWO-DIMENSIONAL ELECTRON SYSTEM as the transverse magnetic field B is increased. For inde-
pendent electrons, the Fermi sea (a) (filled to Fermi energy E

F
) at B = 0, splits into Landau levels (b) separated by the cyclotron

energy. The lowest Landau level (c) is split by interactions into energy levels of composite fermions with attached flux quanta,
which fill a composite-fermion Fermi sea (d) at n = 1/2 and occupy composite-fermion Landau levels (e) at other filling factors. A
jump out of such a level (f) creates an exciton, a neutral particle–hole excitation. At still higher fields, this scenario (d—f) repeats
itself, but now with composite fermions carrying four or more flux quanta.



kth, it generates a phase of magnitude 2p × 2p. By defi-
nition, a closed loop around a unit vortex generates a
phase of 2p. Thus the product in equation 4 attaches 2p
vortices to each electron in the noninteracting Slater-
determinant wavefunction.

So we see that the flux quanta of our “Bohr theory”
represent the microscopic vortices of the many-particle
wavefunction, and the composite fermion is actually the
bound state of an electron and 2p quantum vortices. A flux
quantum is topologically similar to a vortex; it also pro-
duces an Aharonov–Bohm phase of 2p for a closed path
around itself. Therefore it is often useful to model the vor-
tices as flux quanta and envision the composite fermion as
an electron carrying 2p flux quanta.

How do the vortices cancel part of the external B
field? Consider a path in which one particle executes a
counterclockwise loop enclosing an area A, with all the
other particles held fixed. Equating the sum of the
Aharonov–Bohm phase 2pBA/v0 and the phase ⊗2p2prA
coming from the encircled vortices to an effective
Aharonov–Bohm phase 2pAB*/v0, we get the new field B*

of equation 2. Of course a magnetometer will still measure
simply B. But, as far as a composite fermion is concerned,
B* is the real field, as we shall see.

The form of the wavefunction C provides an insight
into why the repulsive interaction between electrons
might force vortices on them. The wavefunction is very
effective in keeping the electrons apart. The probability
that any two will come within a distance r of each other
vanishes like r2(2p+1). Contrast that with the r2 vanishing
for a typical state satisfying the Pauli principle. In
essence, then, electrons transmute into composite fermi-
ons by capturing 2p vortices because that is how they best
screen the repulsive Coulomb interaction. The interaction
between composite fermions is weak because most of the
Coulomb interaction has been screened out—or used up—
in making them.

Equations 2, 3, and 4 are the master equations
describing the quantum fluid of composite fermions. Since
the first two are the same and can be derived from the third,
everything ultimately stems from a single equation. The
quantum numbers of the composite fermion follow straight-
forwardly from the observation that each one is produced by

a single electron. It has the same
charge and spin as the electron, and it
is also a fermion.

Seeing composite fermions
The crucial, non-perturbative respect
in which composite fermions distin-

guish themselves from electrons is that they experience
an effective magnetic field, B*, that is drastically different
from the external magnetic field. The effective magnetic
field is so central, direct, and dramatic a consequence of
the formation of composite fermions that its observation is
tantamount to an observation of the composite fermion
itself.

At filling factors n less than 1, the experiments clear-
ly show us composite fermions subject to the magnetic
field B* rather than electrons subject to B. The most com-
pelling experimental evidence for the composite fermion
comes simply from plotting the high-field magneto-
resistance as a function of 1/n*, which is proportional to B*.
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FIGURE 2. CAPTURING TWO FLUX

quanta transforms each electron in the
plane into a composite fermion that
experiences, in effect, a reduced residual
magnetic field.

FIGURE 3. COMPARING INTEGRAL AND FRACTIONAL

quantum Hall regimes, top and bottom panels, respectively.16, 3

Blue curve (shown only in the top panel) is the Hall resistance
with quantum plateaus. Red curves are ordinary longitudinal

resistivity with a dip, labeled by its electron filling factor n, for
each plateau. The filling factor n = n/(2n + 1) corresponds to

a composite-fermion filling factor n* = n. Thus the two red
curves, despite their very different electron filling factors, are

remarkably similar.



Figure 3 shows us its striking similarity to the magne-
toresistance of electrons at low B (where they are weakly
interacting), plotted as a function of 1/n. This is direct evi-
dence that the strongly correlated liquid of interacting
electrons at filling factor n behaves like a weakly inter-
acting gas of composite fermions at n*.

The quantum Hall effect, evident in figure 3, is one of
the most fascinating phenomena exhibited by two-dimen-
sional electron systems in a magnetic field.4 One sees
plateaus of the Hall resistance RH with quantized values
h/(fe2) centered around n = f, where f is an integer or a
simple fraction. The integral quantum Hall effect is
understood straightforwardly,4 in terms of independent
electrons, as a consequence of the quantization of the
single-electron energy into Landau levels, which produces
a non-degenerate many-particle ground state whenever n
is an integer n. The analogous integral quantum Hall
effect for composite fermions corresponds to n* = n. These
states occur at fractional electron filling factors given by

(5)

which turn out to be precisely the observed “magic” frac-
tions at which the fractional quantum Hall effect is
observed to be particularly prominent. (See PHYSICS
TODAY, July 1993, page 17.) There is, at present, evidence
for more than 30 fractional quantum Hall states. The
equation dictates only odd-denominator fractions, which,
with only one exception, is what the experimenters find.

The fractional quantum Hall effect for electrons is
thus interpreted as an integral quantum Hall effect of
composite fermions—in effect, an observation of compos-
ite-fermion Landau levels. This simple explanation of the
fractional quantum Hall effect not only obtains all the
observed fractional plateaus in a single step; it also uni-
fies the fractional and the integral quantum Hall effects.

The observation of the fractional quantum Hall effect
serves as a macroscopic confirmation of some of the fun-
damental postulates of quantum mechanics. The principle
governing the surprising precision of the quantization of
macroscopic Hall resistance is the single-valuedness of
the microscopic many-electron wavefunction, which
requires that the vorticity of a composite fermion (the
exponent 2p in equation 4) be precisely an integer. The
empirical odd-denominator rule follows, because the 2p
must be even so that the many-particle wavefunction
have the exchange antisymmetry required for fermions.

Robert Laughlin’s original theory of n = 1/(2p+1)
states, a subset of the observed fractions, falls naturally
within the composite-fermion theory. At n* = 1, putting
into equation 4 the explicit form of the non-interacting
Slater-determinant wavefunction Fn* = 1 yields for the
ground state at n = 1/(2p+1)

(6)

which is precisely the wavefunction formulated by Laugh-
lin in 1983 to explain the first observed fractional quan-
tum Hall state (n = 1/3). It represents one filled composite-
fermion Landau level.

An early and influential approach, pioneered by
Steven Girvin and Allan MacDonald,5 regards the Laugh-
lin wavefunction as a Bose condensate, with the role of the
boson played by the bound state of an electron and 2p+1
flux quanta.

What about the fractional quantum Hall effect’s cele-
brated fractional charge. (See PHYSICS TODAY, November
1997, page 17.) It appears as what is called the “local
charge” of an excited composite fermion, defined as the
sum of its intrinsic charge (⊗ e) and the charge of the
screening cloud around it. Its value at n = n/(2pn�1)
can be shown by a simple counting argument to be
⊗e/(2pn�1). This fractional charge is a manifestation of a
quantized screening by the quantum fluid of composite
fermions.

Do composite fermions have a life outside the frac-
tional quantum Hall effect? An important application of
the concept concerns the metallic state at n = 1/2 , where no
fractional quantum Hall state is seen. If composite fermi-
ons exist at that filling factor, they would experience no
effective magnetic field (B* = 0). Thus a mean-field picture
suggests a Fermi sea of composite fermions. (Once again,
see PHYSICS TODAY, July 1993, page 17.)

In an influential theoretical work, Bertrand
Halperin, Patrick Lee, and Nicholas Read argued that
many features of the Fermi surface of composite fermions
survive when fluctuations beyond the mean-field theory
are taken into account.6 At n values near 1/2, the composite
fermions, experiencing a very weak magnetic field, would
execute classical cyclotron orbits of radius R* orders of
magnitude larger than any electronic length scale appro-
priate to B. Experiments by three different groups at Bell
Labs and Stony Brook in 1993–94, and several experiments
since then, have confirmed that R* is indeed the cyclotron
radius of the charge carriers.3 Two of these experimental
results are shown in figures 4 and 5. Farther away from n =
1/2 , the semiclassical orbits of the quantum composite-fermi-
on particles are quantized to produce composite-fermion
Landau levels, first exhibiting Shubnikov–de Haas oscilla-
tions and then the quantum Hall effect.
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FIGURE 4. MEASURING THE EFFECTIVE MAGNETIC FIELD B*

felt by composite fermions, by magnetically focusing them—
injecting them into one constriction and collecting them at
another. The lower panel shows the focusing peaks for elec-
trons at discrete values of B (near B = 0) corresponding to dif-
ferent numbers of bounces (see insert.) The upper panel shows
the corresponding peaks for composite fermions near B* = 0.
The two sets of peaks (superimposed over mesoscopic resist-
ance fluctuations due to disorder) align when one scales B* by a
factor of =+2, to account for the fact that the composite-fermi-
on Fermi sea, unlike the electron Fermi sea, is spin polarized.
(Adapted from ref. 7.)



The observation of composite fermions in the region
around n = 1/2 , where there is neither a quantum Hall
effect nor any other sort of excitation energy gap, was a
watershed for the composite-fermion concept. It was an
explicit demonstration that the composite fermion is more
general than its manifestation in the fractional quantum
Hall effect, where it forms Landau levels. The observation
of the composite-fermion’s Fermi sea explicitly verified its
Fermi statistics, and the measurement of its cyclotron
radius confirmed that it carries a charge ⊗e.

What about its spin? The spin degree of freedom is
frozen in strong magnetic fields at low temperature, when
the Zeeman energy is large compared to the interaction
strength and thermal agitation. But in relatively weak
fields, several spin polarizations become possible. These
differently spin-polarized states, as well as transitions
between them, have been observed, and they are well
described in terms of Landau levels of free, spin-1/2 com-
posite fermions.3,9 The composite-fermion g factor deduced
from these experiments is close to that of the electron.

What, then, is its mass? This question is somewhat
subtle, because the composite fermion’s entire mass is
generated dynamically from interactions. There is, after
all, no mass parameter in the Hamiltonian of equation 1.
The mass is most straightforwardly determined by meas-
uring the excitation gap at a given filling of composite
fermions, and equating it to the cyclotron energy of a com-
posite fermion in the B* field.1,2 But it can also be deduced
from an analysis of the temperature dependence of the
Shubnikov–de Haas oscillations,3 or by ascertaining at
what Zeeman energy the composite-fermion Fermi sea
becomes fully polarized.9 For typical experimental param-
eters, the composite-fermion masses obtained from these
various methods are on the order of the free electron
mass, and much larger than the electron band mass in,
say, GaAs, but unrelated to either.

The rich phenomenology of the lowest Landau-level
quantum liquid thus follows succinctly and coherently
from the concept of composite fermions, without the need
for a microscopic theory. But the simplicity of this expla-
nation should not obscure the non-trivial nature of the
underlying physics: Each strongly interacting electron, with
no kinetic-energy degree of freedom, captures 2p quantum-

mechanical vortices and is thus magically transformed into
a nearly free, massive composite fermion. This composite
fermion experiences a magnetic field drastically different
from the external one, and its kinetic energy manifests itself
through a Fermi sea and Landau levels.

Computer experiments
Fortunately, one can diagonalize the Hamiltonian of equa-
tion 1 numerically for a finite system, to obtain the exact
eigenfunctions and eigenenergies. That provides further
opportunity for rigorous, unbiased, and detailed testing of
the composite-fermion theory. Some typical energy spec-
tra are shown in figure 6. All the structure in these spec-
tra is a consequence of the Coulomb interaction, in the
absence of which all lowest-Landau-level states would be
strictly degenerate.

The central prediction of the composite-fermion theo-
ry is that the low-energy physics of strongly interacting
electrons in an external magnetic field B resembles that of
nearly independent composite fermions in the residual
field B*. This prediction has been extensively confirmed in
computer experiments that establish a one-to-one corre-
spondence between the quantum numbers of the low-
energy states of the two systems.

In particular, one expects a gap at the n values of
equation 5, which correspond to n* = n. Sure enough, at
those values the Coulomb interaction removes the enor-
mous degeneracy of the non-interacting electron system to
produce a non-degenerate ground state, as illustrated in
figure 6. The ground state, highlighted in red, represents
n filled Landau levels of composite fermions. The excited
states highlighted in yellow in the figure are to be inter-
preted as different configurations of the composite-fermi-
on exciton. (See also figure 1f.)

Besides giving the quantum numbers of the low-ener-
gy states, the composite-fermion theory also yields their
wavefunctions (equation 4), which are now projected into
the lowest electronic Landau level, as appropriate for the
large-B limit under consideration. Extensive studies have
shown that these functions have a nearly perfect overlap
with the corresponding exact eigenfunctions, and that
they typically predict the energies to within 0.1% or bet-
ter. Some representative results are shown in figure 6 and
the table on page 45.

To appreciate the significance of these comparisons,
one should note that, for filled composite-fermion Landau
levels or their excitons, C involves no adjustable parame-
ter whatsover. Furthermore, the actual eigenstates are
linear superpositions of a large number of distinct basis
states, as indicated by the towers of excitation levels in
figure 6. That rules out any possibility of accidental agree-
ment. It is rare that such a simple, zero-parameter theory
for a strongly correlated many-body state has such pre-
dictive power. These comparisons also demonstrate that
the wavefunctions C go beyond the simple mean-field pic-
ture that motivated them. They encode the physics of the
residual interaction between composite fermions.

Ana Lopez and Eduardo Fradkin have initiated anoth-
er approach for dealing with corrections to the mean-field
description, in terms of a Chern–Simons field theory. That
approach has been developed further by several groups.6,10
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A quantitative comparison with laboratory experi-
ments requires a consideration of Landau-level mixing,
transverse thickness of the electron wavefunction, and
disorder—all of which are conveniently set to zero in the
computer experiments. These realities do not affect the
qualitative physics nor the quantizations, but they do
introduce various parameters that can only be handled
approximately. After incorporating some of these effects in
various approximations, we find that theory and experi-
ment typically agree, at present, within 10–30% on the
energy of the neutral composite-fermion exciton11 and the
spin-related physics,3,9 and within a factor of two for the
charged-excitation gap.

Are there other phases?
Do the composite fermions exhibit any other phases? If
they were strictly non-interacting, our discussion of their
quantum-Hall and Fermi-sea effects would be the end of
the story. But there is a residual interaction between com-
posite fermions. By definition, it’s whatever is left after
most of the Coulomb interaction is used up in giving the
composite fermion its mass. The residual interaction is
often weak enough to be neglected. That is what we have
done above. But it might, in certain circumstances, be
responsible for creating fascinating new phases. After all,
the interaction between electrons—the fermions we know
best—generates numerous phases, for example, the BCS
superconductor, the Wigner crystal, and Bloch’s sponta-
neously polarized Fermi liquid. There are indications that

all of these phases are feasible also for com-
posite fermions.

At sufficiently small n (� 1/9), the com-
posite-fermion liquid becomes unstable
against spontaneous generation of excitons,
making way for the formation of a Wigner
crystal.12,13 In a range of filling factors prior
to this (n � 1/4), the composite fermion liquid
is predicted to exhibit the Bloch instability,
namely a magnetically ordered broken-sym-
metry phase, even in the absence of Zeeman
coupling.14

Another fascinating state is the BCS-
like p-wave paired state of fully polarized
composite fermions, increasingly believed to
be the source of the fractional quantum-

Hall effect at n = 5/2, the sole exception to the odd-denomi-
nator rule.15 Here, even though the underlying interaction
is purely repulsive, a capture of the vortices during the
creation of composite fermions presumably overscreens
the Coulomb interaction, producing a weak, effectively
attractive interaction between them.

Finally, mixed states containing two different flavors
of composite fermions (with different numbers of attached
flux quanta) would also produce quantum-Hall fractions
other than the principal fractions of equation 5. Prelimi-
nary evidence now exists for such additional fractions.

It remains to clarify the physics of these new phases,
the precise nature of the Fermi liquid at n = 1/(2p), and
the role of disorder in these systems. Another poorly
understood issue is how, as the temperature is raised, do
composite fermions gradually ionize by shedding their
vortices and turning back into electrons.

A quantum particle
Even though the composite fermion behaves, to a great
extent, like an ordinary fermion, we must not forget that
it is a most unusual particle. First of all, it is a truly col-
lective, many-body entity. The definition of a single com-
posite fermion inherently involves all the particles in the
system. Moreover, the composite fermion is a quantum
particle. Of course quantum mechanics describes all par-
ticles, but it participates in the very definition of the com-
posite fermion, whose creation is the union of an electron
and quantum mechanical phases (vortices). The compos-
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energies per particle (dashes) from numerical
diagonalization against the energies predicted
by composite fermion theory (dots) with no
adjustable parameters, for the low-energy
states of a model system of N = 8 to 12 inter-
acting electrons on the surface of a sphere
pierced by a radial magnetic field characterized
by filling factor n. L is the system’s total
orbital angular momentum. (Also see the table
on page 45.) The ground state (L = 0) is high-
lighted in red, and the well-defined branch of
low lying excited states (highlighted in yellow)
represents the composite-fermion exciton in
various possible configurations. The l in the
energy unit is the magnetic length =+++\/eB+.
The towers of excited states extend well
beyond the figure’s high-energy cutoffs.
Adapted from ref.12.



ite fermion could not exist in a purely classical world.
Futhermore, the orbits of composite fermions are quan-
tized to produce a quantum fluid of quantum particles.

Among the remarkable features associated with the
physics of composite fermions are the dynamical genera-
tion of a mass where there was none to begin with, the
quantum-mechanical renormalization of the magnetic
field, pairing due to purely repulsive interactions, and
fractional charge generated by the quantization of screen-
ing. It is irresistible to wonder which of these concepts
finds wider applications in nature.
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EXACT ENERGIES PER PARTICLE for the the ground states of
figure 6, compared with those calculated from the composite-
fermion theory. Also given are results for the excited state in
which a composite-fermion particle and its hole are farthest
apart. (From ref. 12.)
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n N Ground state Excited state
Composite Exact Composite Exact

fermion fermion

8 –0.4389 –0.4391 –0.4261 –0.4266

10 –0.4326 –0.4328 –0.4224 –0.4229

8 –0.4802 –0.4802 –0.4714 –0.4717

10 –0.4693 –0.4694 –0.4625 –0.4627

9 –0.4991 –0.4992 –0.4915 –0.4916

12 –0.4825 –0.4826 –0.4782 –0.4783


