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Abstract

In this seminar I present the fractional quantum Hall effect (FQHE), which can be
observed at low temperatures and high magnetic fields in two-dimensional electron systems
(2DESs). After a brief overview of Hall effect, Landau levels and 2DESs, the FQHE and
integer quantum Hall effect are presented and explained using Laughlin’s gauge invariance
and Jain’s composite-particle approach, with more focus on FQHE specialties.
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1 Introduction

When an electrical conductor is exposed to a magnetic field perpendicular to the conductor,
voltage transversal to an electric current direction is observed. The transversal voltage has
linear dependence on the electric current and the magnetic field. As Edwin Hall was the one to
discover this effect, it is called Hall effect.

Quantum Hall effect (QHE) is a term, describing the occurrence of transverse conductivity
σxy quantization in two dimensional electron systems (2DESs) at fields on the order of 10 T and
temperatures on the order of 1 K. The conductivity is quantized with values [1]:

σxy =
1

RH
ν, where RH =

h

e2
(1)

QHE covers two very different phenomena: integer quantum Hall effect (IQHE), where ν
from equation 1 is an integer and fractional quantum Hall effect (FQHE), where ν is a fraction.
They differ in interpretation as well - if IQHE is considered as a case of non-interacting electrons,
FQHE results from the condensation of the two-dimensional electron gas. Even more stunning
are the excitations of the ground state in FQHE - they were predicted to have fractional charge
[2], which was later experimentally observed [3]. The Nobel Prize in Physics in 1998 was awarded
to Störmer and Tsui for the discovery of the FQHE and to Laughlin for his theory [4].

The main focus of this seminar is to present FQHE, theory as well as some experimental
features. I shall start with a a few word on Hall effect. Further on I shall explain what makes all
the difference in 2DESs compared to three dimensions. Finally composite-fermion approach will
be presented as a theory explaining the observations and Laughlin wave function as a solution
of many-body Hamiltonian for 1/q states.

2 Hall effect

In a homogeneous and isotropic conductor electric current density j and electric field E are
proportional:

j = σE,
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where σ is the electrical conductivity. If the external magnetic field H is applied, we rewrite the
proportionality above as

ji = σijEj ,

where σij is an ij-component of a rank two tensor, the conductivity tensor. The conductivity
tensor, can be divided into symmetric and antisymmetric parts, where the former determines the
Joule heat generation and the latter giving rise to the Hall effect [5]. Alternatively, resistivity
tensor ρ can be defined to satisfy the equation

E = ρj,

thus being equal to the inverse of the conductivity tensor.
The Hall effect was discovered in 1879 by Edwin Hall. The novelty of the discovery was

the voltage VH across the current path, resulting from accumulation of charge on one side as
compared to the other due to the current perpendicular to electric field, determined by the
antisymmetric part of conductivity tensor. Hall deducted from his different experiments that
voltage VH is proportional to the magnetic field B and to the current I parallel to the electric
field. [6]

Typical geometry for measurement of Hall effect is shown in Figure 1. Usually the longi-
tudinal voltage V and transversal voltage VH are determined, or their corresponding resistivity
tensor components, ρxx = 1/σxx = Ex/jx and ρxy = 1/σxy = Ey/jx respectively. We chose the
electric current vector j to point along x axis and chose the direction, where VH can be observed,
as y axis.

Figure 1: Geometry for measurement of the longitudinal voltage V and transversal Hall voltage
VH . Black curves represent the classical trajectories of electrons in the magnetic field [6].

It can be shown [1] that the Hall coefficient R, R = Ey/Bjx, can be written as

R = − 1

nec

for conductors with electron-like transfer, where n denotes the electron density. Thus, the Hall
effect is frequently used to determine the carrier density of free electrons in electrical conductors.
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In 1980 von Klitzing, Dorda, and Pepper measured the Hall effect in the inversion layer at
Si/SiO2 interface at low temperatures and high fields. Instead of reproducing the linear depen-
dence on the magnetic field, they observed that the transverse conductivity σxy was quantized
[1]. Which part of their experiment was the one to produce such drastic changes compared to
Edwin Hall results?

3 Two-dimensional electron systems

While Halls sample was a sheet of gold leaf [6], which is a three-dimensional electron system, von
Klitzing, Dorda, and Pepper used a sample, where a two-dimensional electron gas is present. As
electrons are restricted to move only in two dimensions, their behaviour is bound to be different
than in three-dimensional systems, for instance, as Landau pointed out, that motion in a plane
perpendicular to a uniform magnetic field has discrete energy levels, called Landau levels [7].

3.1 Landau quantization

Consider a particle of mass m, spin s and magneton µ confined between two planes, for instance
an electron in a 2DES. For the vector potential of the uniform magnetic field, taken in the form

Ax = −By , Ay = Az = 0,

the Hamiltonian is [7]:

Ĥ =
1

2m

(
p̂x −

eBy

c

)2

+
p̂y

2

2m
− µŝzB. (2)

We seek the solution of the stationary Schrödinger equation in the form

ψ = eıpxx/~f(y).

Using this ansatz in Schrodinger equation for Hamiltonian in equation 2, we obtain:

f ′′(y) +
2m

~2

[
(E + µszB)− 1

2
mω2

c (y − y0)2

]
f(y) = 0, (3)

where we defined cyclotron frequency ωc as

ωc =
eB

mc

and y0 as
y0 = −cpx

eB
.

Formally equation 3 represents a Schrödinger equation for a harmonic oscillator centred about
y0 and oscillating with frequency ωc. Following the harmonic oscillator analogy we write the
energy levels of a particle in a uniform magnetic field as

EνL,kx,kz = (νL + 1/2)~ωc + µszB,

where the integer νL labels the Landau levels. Even in three dimensions the motion in the plane
perpendicular to the field is still quantized. However, due to the velocity in the direction of
the field taking any value, motion in an arbitrary direction is not quantized. If the particle is
restricted to move only in one dimension, Landau quantization does not arise.
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Considering that our sample is finite, we obtain the degeneracy of energy states in sample
with total area of A as [1]

N =
BA

φ0
=

Φ

Φ0
,

where Φ0 = hc
e is the magnetic flux quantum. We can further define the Landau-level filling

factor ν as the ratio of the number of free electrons to the degeneracy of energy states. For 2D
electron density of n, we obtain

ν =
An

N
=
n~c
eB

.

In a realistic two-dimensional electron system (2DES) impurities are always present and
as such, completely discrete density of states is not observable even in the purest of samples.
Instead, there are disorder-induced localized states in between the Landau level peaks as shown
in Figure 2.

Figure 2: Density of energy states with a large number of states at energies ~ωc(ν + 1/2)
corresponding to Landau quantization in 2DESs. The presence of impurities on the right side
broadens the peaks and produces localized states between the peaks [10].

3.2 Creation of a two-dimensional electron system

Constructing a 2DES can be done in a three-dimensional world with confining electrons to the
interface between two substances, thus restricting electron movement in direction perpendicular
to the interface. The QHE was discovered in a 2DES where electrons were confined to the inter-
face between two different semiconductors. While Klitzing, et al. used the Si MOSFET to create
a 2DES, Störmer, Tsui, and Gossard did this at a GaAs/AlGaAs heterojunction obtaining much
higher mobilities of the electrons. Both types of 2DES are schematically shown in Figure 3. They
used samples consisting of undoped GaAs, undoped Al0.3Ga0.7As, Si-doped Al0.3Ga0.7As, and
Si-doped GaAs single crystals, each around 500 Å thick, sequentially grown on GaAs substrates
using molecular beam epitaxy techniques [8], which are high-vacuum evaporation techniques
allowing building up solids one layer at a time.

GaAs and AlGaAs interfaces are frequently used as there is nearly no lattice distortion
incurred by placing layers of GaAs and AlGaAs together. This is due to GaAs and AlAs having
very similar crystal structure, with lattice constants of 5.63 Å and 5.62 Å respectively and both
adopting the zincblende structure, therefore by replacing some gallium atoms with aluminium
ones lattices change negligibly. [1]

Gap energies for Al0.3Ga0.7As and GaAs differ and give rise to band bending at the junction
between Al0.3Ga0.7As and GaAs layers as shown in Figure 4(A). When doping of both sides of
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Figure 3: Schematic drawings of a two dimensional electron gas in (a) a silicon MOSFET
transistor and (b) a GaAs/AlGaAs heterojunction [6].

the junction is heavy enough, chemical potential µ can rise above the notch in the potential,
thus creating a small region, occupied even at zero temperature, called inversion layer, as shown
in Figure 4(C). The notch in the potential can be also interpreted to present a one-dimensional
attractive triangular potential for electrons, always having at least one bound eigenstate. The
potential barriers in the vicinity of heterojunction are on the order of 0.1 eV, thus restricting the
temperatures to a few kelvin or less, if only the ground state was to have significant occupation.
By creating a heterojunction between Al0.3Ga0.7As and GaAs and keeping the temperature
low enough, the electrons are trapped in the one-dimensional triangular potential, thus being
confined to the interface between semiconductors and giving rise to a two-dimensional electron
gas.

Figure 4: (A) and (B) schematic picture of junction between Al0.3Ga0.7As and GaAs semicon-
ductors. (C) In case of heavy doping chemical potential µ can rise above conduction band edge,
which is enlarged in (D), where a bound-state wave function is sketched. The junction plane is
projected to one dimension for better clarity. [1]

Electron scattering is undesirable, as it obscures the mutual electron interactions and in-
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teractions with the magnetic field. Scattering occurs on impurities, such as lattice distortions,
impurities introduced with doping, and on phonons. The latter part of scattering can readily be
minimized by cooling the sample, while the former part can be taken care of with appropriate
choice of materials. As the heterojunction mentioned above has very small lattice distortions,
only scattering on doped impurities needs to be prevented. This is done by introducing the
doped Si atoms around 0.1 µm away from the interface between Al0.3Ga0.7As and GaAs semi-
conductors. This distance assures little scattering as well as transfer of electrons to inversion
layer. [6]

The quality of samples containing 2DESs is usually described with electron mobility. Bulk
GaAs has a mobility on the order of 103cm2/V sec, while recent doped samples achieved mo-
bilities on the order of 107cm2/V sec at temperatures around 1 K. For illustration, mobility of
2× 107cm2/V sec corresponds to approximately 0.2 mm mean free path [6].

4 Fractional quantum Hall effect

In their article [8] Tsui, Stormer, and Gossard reported "some striking, new results on the trans-
port of high-mobility, 2D electrons, in GaAs-AlGaAs heterojunctions in the extreme quantum
limit, when the lowest-energy, spin-polarized Landau level is partially filled". The striking result
was a dip in the diagonal part of the resistivity tensor ρxx and a plateau in Hall resistivity ρxy at
the 1/3 filling factor of the first Landau level. Integer quantum Hall effect, discovered some time
before Tsui, Stormer and Gossard conducted their experiment, with the same characteristics, a
valley in ρxx and a plateau in ρxy, was only observed at full fillings of Landau levels.

As the filling factor ν is determined with the number of free electrons in the sample as
well as with the degeneracy of energy states, one can readily change the degeneracy of Landau
levels by varying the strength of the magnetic field B and thus change the filling factor. Higher
Landau levels have higher energy, therefore by raising the magnetic field higher levels start to
lose electrons due to the change in degeneracy. Having localized states present as a consequence
of impurities creates a range of B for which all the extended states in the lower-lying Landau
level remain filled, while the higher-lying is completely empty (in a perfect sample with no
impurities, the lower-lying level would start to lose the electrons as soon the higher-lying one
was completely empty).

The occupation of the Landau levels not changing over a range of B corresponds with the
formation of the energy gap, which in turn corresponds to the plateaus in Hall resistance. As the
ranges of magnetic field strengths, where the lower Landau level stays filled, while the higher one
is empty, lie at integer filling factors, this phenomenon is called integer quantum Hall effect. The
plateau, which was observed forming at ν = 1/3 as shown in Figure 5, therefore could not have
been the result of IQHE. The newly found phenomenon was later named fractional quantum
Hall effect (FQHE) for occurring at fractional fillings of Landau levels and it’s underlying physics
is substantially different from the physics underlying the IQHE.

The basic explanation for plateaus in Hall voltage in FQHE is the formation of the quan-
tum liquid as a result of electrons trying to minimize the Coulomb repulsion. More detailed
explanations will be provided further on in the seminar.

4.1 Laughlin’s gauge argument

Quantum Hall effect describes Hall voltage and Hall resistance being quantized. Using gauge
invariance argument Laughlin has derived the correct values for plateaus in Hall resistivity ρxy
for IQHE by his gedanken experiment [9].
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Figure 5: Measurements made by Tsui, Stormer, and Gossard, showing formation of a plateau in
Hall resistivity ρxy at 1/3 filling of the first Laundau level, with diagonal part of the resistivity
tensor ρxx having a dip at the same filling factor. Sample geometry is shown in the top left
corner. [8]

Let us follow Laughlin’s train of thought to derive the quantum of resistance [9, 10]: As
shown in Figure 8, take a two-dimensional metal strip bent into a loop pierced everywhere
perpendicular to the surface by the magnetic field B.

Figure 6: Diagram of metallic loop used in gauge invariance argument for QHE. [9]

For each electron adopt the Landau gauge as well as Hamiltonian from Equation 2, while
adding a term covering the transversal electric field eE0y to the Hamiltonian. The resulting
energy eigenvalues are

EνL,k = (νL +
1

2
)ωc + eE0y0 +

1

2
m

(
cE0

B

)2

,

where y0 represents the centre of a harmonic oscillator, as in Landau quantization. y0 being the
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only term to change with the increase of the vector potential in the manner

y0 → y0 −
∆A

B
,

the energy EνL,k increases linearly with ∆A.
The carrier states can be divided into two classes. One are the localized states, which are

not continuous around the loop, and are unaffected by the application of the magnetic flux Φ to
the first order. The second one are the extended states, which are continuous around the loop,
and as they enclose the magnetic flux, their energy can be changed. Addition of the magnetic
flux quantum therefore maps the system into itself [11] and changes y0, in the absence of the
disorder, by

−∆A

B
= − Φ0

BL
= − Φ0d

BLd
= − d

N
,

where we denoted the width of the strip as d and N represents the degeneracy of Landau levels.
The latter can be interpreted as evolving of a wave function into its neighbour with the overall
effect of one electron per Landau level being transported to the other edge of the loop. Though
in the system with small amount of disorder the mechanism of transfer is different, the number
of transferred electrons stays the same [10]. The total current I around the loop can be obtained
as a derivative of the total energy U with respect to vector potential or, for large enough loop
as a differential

I = c
∆U

∆Φ
with the denominator ∆Φ being the magnetic flux quantum. All the energy increase is due to
the transfer of ν electrons from one edge of the loop to the other, overcoming the voltage V.
The current is therefore

I = c
νeV

Φ0
=
νe2

h
V,

resulting in Hall resistivity of

ρxy =
1

ν

h

e2
=
RH
ν

, ν ∈ N. (4)

The theoretical value differs from the measured values in the plateaus to a few parts per
billion, thus leading to the quantum of resistance RH = 25, 813 kΩ being set as a new resistance
standard in 1990 [6]. As the gauge invariance argument can be used for a general explanation
for FQHE as well [1], the plateaus in resistivity will be at

ρxy =
1

ν

h

e2
=
RH
ν

, ν =
p

q
∈ Q+. (5)

4.2 Laughlin’s trial wave function

While the phenomenology behind both of the QHE is practically the same, the cause for the
energy gap needed for the phenomena to occur is very different. While in IQHE this gap arises
from the formation of Landau levels and localized states due to impurities at Fermi level, the
main cause for FQHE is the Coulomb interaction between electrons. Thus rigidity of the electron
system in FQHE is imparted through the preferred density of electrons, which are discrete, to
achieve minimal repulsion.

Laughlin’s main contribution to the FQHE was his trial wave function, shown schematically
on Figure 7, proposed in his article [2]. His prototype ground state

Ψm(z1, ..., zN ) =
N∏
j<k

(zj − zk)m exp

− 1

4l2

N∑
j

‖zj‖2
,
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where m is an odd number, in Laughlin’s case 3, l =
√

hc
eB is the magnetic length1 and zj =

xj + ıyj is denoting the location of the jth particle as a complex number, is the approximate
solution of the model Hamiltonian including Coulomb interaction between electrons v(~rj − ~rk)
and the ion potential Vion(~rj)

H =
N∑
j

{
1

2m

(
−ı~~∇j −

e

c
~A(~rj)

)
+ Vion(~rj)

}
+

N∑
j<k

v(~rj − ~rk).

The ion potential is present only to achieve stability of the system with neutralizing the
electron interaction. Calculating the probability density as

‖Ψm(z1, ..., zN )‖2 = e−βΦ(z1,...,zN ),

and choosing β = 1/m, one can obtain the potential energy Φ(z1, . . . , zN )

Φ(z1, . . . , zN ) = −2m2
N∑
j<k

ln|zj − zk|+
m

2l2

N∑
j

|z2
j |.

The first term can be described as coulomb repulsion of particles of "charges" m in two dimen-
sions, while the second one represents a uniform "charge" density 1/2πl2 being attracted to the
origin. The particles need to have density ρ = 1/2mπl2, if local electrical neutrality is to be
present.

It can be readily seen, why the proposed wave function could work well. Having an odd m
the wave function is anti-symmetrical to the particle exchange, which is required due to electrons
being fermions. Furthermore, such a state exhibits the preference of having the particle density
of ρ = 1/2mπl2, which leads to the formation of the plateaus in transversal resistivity ρxy.

Figure 7: Charge distribution of a prototype electron for the ν = 1/3 Laughlin wave function.
The green spheres represent electrons, while the black arrows represent flux quanta [12].

4.3 Partially charged excitations

Laughlin also proposed that the elementary excitations of the FQHE state carry fractional
charge [2]. The excitations were generated in a though experiment by piercing the 2DES with

1the radius at which the charge would circle in presence of the magnetic field B
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an infinitely thin solenoid and adiabatically passing a flux quantum Φ0 through the solenoid.
Similar to the thought experiment on gauge invariance passing of a flux quantum Φ0 results in
mapping of a system into itself. As the geometry is different Landau orbits far away from the
solenoid are translated toward it [10]. The net effect is taking the average charge per state at
infinity and depositing it near the solenoid as represented in Figure 8. Removing the solenoid
will give us an exact excited state of the original Hamiltonian, carrying the above mentioned
charge.

Figure 8: Illustration of the thought experiment demonstrating the partially charged excitations.
The arrows on the right picture show the translation of the Landau levels [10].

Taking into account the preferred densities of 1/2πml2, where m is an odd integer, corre-
sponding in an average of e/m charge per state at infinity, the elementary excitations carry a
charge of e/m.

4.4 Composite-fermion approach

Trial wave function proposed by Laughlin [2] only covers the filling factors of type 1/p. Other the-
ories emerged later, such as hierarchical scheme by Haldane [13] and Halperin [14] and composite-
fermion approach proposed by Jain [15], which try to provide an microscopic explanation for
other observed states, not only for 1/p states. I shall present the latter theory as it proposes an
unified scheme for both FQHE and IQHE.

We have seen that the filling factor ν plays a very important role in QHE. It determines the
behaviour of the 2DES, namely whether it manifests IQHE or FQHE. Jain [15] proposes that
the inverse of the filling factor, namely ratio of the total number of flux quanta to the total
number of electrons, is the important parameter.

Laughlin [16] and Arovas et al. [17] observed the equivalence, in a mean field sense, of an
uniform liquid of electrons in a magnetic field with the average flux per electron area of mΦ0

and of an uniform liquid of electrons, each carrying with it a flux of mΦ0. As an analogy to type
II superconductors, the magnetic field B piercing the electron gas can be viewed as forming of
vortices or flux tubes within the liquid of electrons, one per flux quantum Φ0, as shown as a part
of Figure 9. The electronic charge within the vortex is zero at its centre and average surrounding
charge density at its edge. As such vortex is basically the same as the absence of electrons it is
particularly beneficial to put a vortex on top of an electron due to Coulomb repulsion. If enough
vortices are present, placing more of them onto the electron further reduces the repulsive energy.
Putting a vortex onto an electron is the same as the attachment of a flux quantum, generating
the vortex, to the charge carrier thus creating new entities called composite particles (CP).
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Figure 9: Schematic drawing of electron vortex attraction at Landau-level filling ν = 1/3. a)
The Pauli principle is satisfied by placing one vortex onto each electron. b) Placing more vortices
onto each electron further reduces Coulomb repulsion. c) Vortex attachment can be viewed as
the attachment of magnetic flux quanta to the electrons, creating composite particles. d) and
e) show the 2DES in a magnetic field described with vortices [6].

Electrons are fermions and generate a −1 phase shift with the exchange of the position of two
electrons. Exchange of each flux quantum Φ0 = hc

e multiplies the wave function by an additional
−1 [6]. The statistics of CP therefore depend on, as Jain proposed, the number of flux quanta
per charge carrier. If the magnetic field generates an even number of flux quanta per charge,
the resulting CP obey the Fermi-Dirac statistics, hence can be called composite fermions (CFs),
while an odd number of flux quanta per charge gives rise to composite bosons (CB).

The main idea of this approach is that, since the relevant correlations between CFs are the
correlations due to their Fermi statistics, the FQHE for electrons is a manifestation of the IQHE
for CFs [15].

The leftover vortices, which haven’t been used for formation of CF, represent an effective
field B∗ of

B∗ = B − 2mnΦ0,

where n denotes two-dimensional carrier density. Composite fermions form Landau-like levels
in B∗ with the filling factor ν∗ = n~c

eB∗ . In analogy with electrons for integer ν∗ IQHE for CF
manifests, thus producing plateaus in Hall resistivity when filling factor for electrons ν satisfies
the demand

ν = ν∗
B∗

B
=

ν∗

2mν∗ ± 1
, (6)

where ± once again denotes the direction of B∗ compared to B.
As many of the states from Equation 6 have been observed thus far as shown on Figure 10,

the theory has been back up by experiments quite well. Still this theory does not account for a
peculiar state with ν = 5/2, which was observed to exhibit all the FQHE characteristics [18] as
shown on Figure 11, despite having an even denominator.

It is speculated that for FQHE features of the ν = 5/2 state pairing of CF produces a novel
many-particle ground state. This pairing is thought to be analogous to formation of Cooper pairs
and their subsequent condensation into a superconducting state. Unfortunately no experiments
were made to confirm this speculation, so it is still unclear whether pairing of CFs is the right
way to explain this phenomenon. [6]
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Figure 10: Overview of diagonal resistivity σxx and Hall resistance σxy of a GaAs/AlGaAs
heterostructure at temperatures ≈ 150 mK. Filling factor ν and Landau levels N are indicated.
[18]

Figure 11: Diagonal resistivity σxx and Hall resistance σxy (enlarged section a) of Figure 10).
Filling factors ν are indicated in σxx, while quantum numbers p/q are shown in σxy. [18]
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5 Conclusions

While paving our way to fractional quantum Hall effect, some important physical phenomena and
discoveries were mentioned. We reviewed our knowledge of electrical conduction and Hall effect,
rediscovered Landau quantization, where energy is quantized in a two-dimensional electrons
system exposed to magnetic field, and we got to know how the high-mobility two-dimensional
electrons systems are made in our three-dimensional world. It was also explained why and
when do the electrons in two-dimensional electrons systems of high mobility show quantized
Hall resistivity and minima in diagonal resistivity. In other words, the theoretical framework for
quantum Hall effect was presented, namely the Laughlin’s gauge invariance argument as a way
to explain the value of quantum of resistance and composite-fermion approach as a microscopic
theory of the FQHE. In the seminar the somewhat counter-intuitive excitations with fractional
charge and the ν = 5/2 state were presented as a manifestation of the FQHE.

The discovery of IQHE brought a new standard for electrical resistivity and a method of pre-
cise measurement of structure constant. FQHE remains influential in theories about topological
order, while some parts of the theoretical framework for FQHE are of a particular theoretical
importance, such as composite particles [19].
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