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WHAT IS SPINTRONICS?



OVERVIEW - SPINTRONICS

microelectronic devices that function by exploiting the spin of electrons

→ active control and manipulation of spin degrees of freedom in
solid-state-systems

→ own new functionalities not feasible or ineffective with conventional
electronics

→ common use today: magnetic read head in computer hard drives

Goal of spintronics:

→ understanding the interaction between a particle spin and its
solid-state environments

→ creating useful devices
e.g. SFET, nonvolatile MRAM

Motorola 256-kb MRAM device



TERM DECLARATION

Spin:

• spin of a single electron with magnetic moment µe = −gµB~s

• average spin of an ensemble of electrons, manifested by
magnetization

Control of spin:

• coherent spin manipulation of a single or a few-spin system

• control of the population and the phase of the spin of an ensemble
of particles



FUNDAMENTAL STUDIES OF SPINTRONICS

Investigations of:

→ spin transport in electronic materials

→ spin dynamics

→ spin relaxation (mostly involving spin-orbit coupling)

spintronic applications:

→ typically require current flow and/or manipulation of the
non-equilibrium spin (spin polarization)



HOW TO GENERATE SPIN POLARIZATION?

Creating a non-equilibrium spin population:

• electrical spin injection: more desirable for device applications

→ magnetic electrode connected to sample

→ current drives spin-polarized electrons from electrode to sample

→ non-equilibrium spin (or magnetization δM) accumulates in the
sample (dependent on spin relaxation)

(I. Žutić et. al. Rev. Mod. Phys. 76, p. 328, 2004)



SPIN-POLARIZED TRANSPORT

Two-current model (Mott 1936):

• looking for explanation of unusual behavior of resistance in
ferromagnetic metals

• at sufficiently low temperatures:

→ electrons of majority and minority spin (magnetic moment
parallel and anti-parallel to the magnetization of a ferromagnet,
respectively) do not mix in the scattering processes

→ conductivity can be expressed as the sum of two independent
and unequal parts for two different spin projections

→ current in ferromagnets is spin polarized

• various magneto-resistive phenomena can be explained by this model
when further extented



MAGNETO-RESISTANCE



STONER MODEL

→ accounts for metallic ferromagnets

→ qualitatively explains the properties of excitations in the spin
polarized states

spin-resolved density of d states in neutral and ferromagnetic metals (∆ex : exchange spin splitting)



ANISOTROPIC MAGNETO-RESISTANCE IN BULK
FERROMAGNETS

→ discovered by Lord Kelvin (Thomson, 1857)

→ electrical resistance depends on the angle between the direction of
electrical current and orientation of magnetic field

�When you can measure what you are speaking
about and express it in numbers, you know
something about it.�
Lecture to the Institution of Civil Engineers, 3 May 1883

Lord Kelvin

(www.todayinsci.com/K/Kelvin Lord/Kelvin Lord.htm)



F/I/F MAGNETIC TUNNEL JUNCTION

Model for a change of conductance G between magnetization
M (↑↑) and M (↑↓) in two ferromagnetic regions (F):

electron tunneling in F/I/F tunnel junctions:
parallel orientation of anti-parallel orientation of

magnetizations magnetizations

(M. Jullière, Phys. Lett. 54A, 225, 1975)



SPIN-VALVE EFFECT

Tunneling and Giant Magneto Resistance (TMR and GMR):

TMR =
∆R

R↑↑
=

R↑↓ − R↑↑
R↑↑

=
G↑↑ − G↑↓

G↑↓
with R =

1

G

in terms of polarization Pj (j = 1, 2):

Pj =
NMj − Nmj

NMj + Nmj
NMj ,Nmj : spin-resolved density of states for

majority, minority spin in ferromagnet Fj

G↑↑ ∼ NM1NM2 + Nm1Nm2

G↑↓ ∼ NM1Nm2 + Nm1NM2

=⇒ TMR =
2P1P2

1− P1P2

discovery of large temperature TMR:

• renewed interest in studying magnetic tunnel junctions
basis for several magnetic RAM-prototypes



MAGNETO-RESISTANCE APPLICATIONS

ability to control the relative orientation of M1 and M2 is of
major importance!

realized by:

• small magnetic field

• high switching speeds

• using the phenomenon: spin-transfer torque

→ spin-polarized current transfers angular momentum from
carriers to ferromagnet
=⇒ altering the orientation of the corresponding magnetization

(even without an applied magnetic field)

[in GMR or TMR structures: relative orientation of
magnetizations affects the flow of spin-polarized current]

• optically and electrically (ferromagnetic semiconductors)



SPIN FIELD EFFECT
TRANSISTOR (SPIN-FET)



2D ELECTRON GAS (2DEG)

→ free electrons in 2 dimensions

→ electrons are confined symmetrically or asymmetrically in the third
dimension

=⇒ quantized energy levels

Band structure in GaAs/AlGaAs heterojunction based
High-electron-mobility-transistor (HEMT)

http://en.wikipedia.org/wiki/High electron mobility transistor



SPIN-ORBIT (SO) COUPLING

=⇒ it is an interaction coupling the particle’s spin with its
orbital motion

example:

→ Atoms: LS-coupling

SO coupling in 2DEG:

• Dresselhaus effect (bulk inversion asymmetry)

• Rashba effect (structure inversion asymmetry):

→ investigated to create an electronic analog of the electro-optic
modulator (Spin-FET)

→ depends on:

− confining potential shape (SO-coupling constant α):

changeable by using an external electric field



RASHBA EFFECT IN 2DEG

SO Hamiltonian:

HSO =
α

~
(~σx~p) · ê [1]

~σ: Pauli matrices

α: SO coupling constant

ê: unity vector perpendicular to the 2DEG

Total Hamiltonian H of a 2DEG in plane (x , y):

H =
~p2

2m∗
+
α

~
(~σx~p) · êz with ~p ≡ (px , py , 0)

([1] Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78, 1984)



TOTAL HAMILTONIAN H

eigenvalues:

E±(~k) =
~2k2

2m∗
± αk =

~2

2m∗
(k ± kSO)2 −∆SO

k =
√

k2
x + k2

y

kSO =
αm∗

~2

∆SO =

(
αm∗

~

)2
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TOTAL HAMILTONIAN H

eigenvectors:

Ψ+(x , y) = e i(kx x+ky y) 1√
2

(
1

ie−iΘ

)
with Θ = arctan

(
ky

kx

)
Ψ−(x , y) = e i(kx x+ky y) 1√

2

(
1

−ie−iΘ

) {
Θ : angle between ~p

and kx axis

Properties:

→ always Ψ+ ⊥ Ψ−

→ electron moves along x:

Ψ+(x , y) ∼
(

1
i

)
and Ψ−(x , y) ∼

(
1
−i

)
→ electron moves along y:

Ψ+(x , y) ∼
(

1
1

)
and Ψ−(x , y) ∼

(
1
−1

)



ENERGY SPECTRUM AND FERMI CONTOURS

energy spectrum of H Fermi contours

Parametrization:

~k = k(cosϕ, sinϕ) kF
±(ϕ,EF ) = ∓αm

∗

~2
+

√(
αm∗

~2

)2

+
2m∗

~2
EF



ENERGY SPECTRA

free electron electron in external electron in presence
magnetic field of Rashba SO interaction

electron:

LEFT : free: spin degeneracy!

CENTER : in external magnetic field: Zeeman splitting
(gap = g∗µBB; g∗: effective gyro-magnetic ratio)

RIGHT : with structure inversion asymmetry: degeneracy removed without
gaining a gap except for ~k=0



SPIN FIELD EFFECT TRANSISTOR (SPIN-FET)

→ proposed by Datta and Das [1]

→ using Rashba SO interaction:

HSO =
α

~
(~σx~p) · ê

→ basic effect understandable through analogy to electro-optic light
modulator

([1] S. Datta and B. Das, Appl. Phys. Lett, 56, 665-667, 1990)



ELECTRO-OPTIC LIGHT MODULATOR

Vg

y

z

45°

y

z

45°Electro optic material

Polarizer Analyzer

electro-optic light modulator

→ input of polarized light in y-z-plane:

(
1
1

)
=

(
1
0

)
+

(
0
1

)
(45◦ pol.) (z pol.) (y pol.)

→ electro-optic effect (dielectric constant εzz 6= εyy )

=⇒ two polarizations gain different phase shifts (k1L and k2L)

→ emerging light polarization:

(
e ik1L

e ik2L

)



ELECTRO-OPTIC LIGHT MODULATOR

Vg

y

z

45°

y

z

45°Electro optic material

Polarizer Analyzer

electro-optic light modulator

→ output along

(
1
1

)
can pass the analyzer

→ output power:

P0 ∝
∣∣∣∣( 1 1

)( e ik1L

e ik2L

)∣∣∣∣ = 4 cos2
(

(k1−k2)L
2

)
→ gate voltage:

controls phase shift difference (k1 − k2)L



SPIN FIELD EFFECT TRANSISTOR (SPIN-FET)

Contact
Iron

Contact
Iron

gV

Schottky   Gate

In AlAs

InGaAs
2DEG

xz

y

Spin-FET (Datta and Das)

→ polarizer and analyzer:

• implemented by using ferromagnetic material contacts (iron)

• at the Fermi energy:
density of states for electrons with one spin � density of states
for electrons with other spin (Stoner-Model)

• electron injection and detection occurs preferentially with a
particular spin by the contact



SPIN-FET

Contact
Iron

Contact
Iron

gV

Schottky   Gate

In AlAs

InGaAs
2DEG

xz

y

Spin-FET (Datta and Das)

→ contact magnetized in x direction:

• preferentially injects and detects electrons spin polarized along
positive x direction

• represented by:

(
1
1

)
=

(
1
0

)
+

(
0
1

)
(+x pol.) (+z pol.) (-z pol.)



SPIN-FET

→ narrow-gap semicondutors with Rashba SO coupling:

• provide the analog of an electro-optic material (phase shift!)

• existence of energy splitting between spin up and spin down
electrons in 2DEG’s even with no external magnetic field

• +z polarized and -z polarized electrons with the same energy
have different wave vectors k1 and k2

Contact
Iron

Contact
Iron

gV

Schottky   Gate

In AlAs

InGaAs
2DEG

xz

y

Spin-FET (Datta and Das) energy spectrum
(Rashba-spin-orbit interaction)



SPIN-FET

Assumption: 2DEG in the x-z plane

1D-case:
electron is traveling in the x direction: kx 6= 0, kz = 0, HR = α

~ (σz · px )

H = H0 + HR =

(
~2k2

x

2m∗ + αkx 0

0
~2k2

x

2m∗ − αkx

)

E (z pol ./spin ↑) =
~2k2

x

2m∗
− αkx

E (−z pol ./spin ↓) =
~2k2

x

2m∗
+ αkx

eigenstates:

(
1
0

)
;

(
0
1

)

=⇒ incoming electron beam

(
1
1

)
splits equally between them!

energy spectrum
(Rashba-spin-orbit interaction)



SPIN-FET

1D-case:

E (z pol ./spin ↑) =
~2k2

x

2m∗
− αkx = EF (Fermi energy)

kx↑(1/2)
=

m∗α

~2
±

√(
m∗α

~2

)2

+
2m∗EF

~2

E (−z pol ./spin ↓) =
~2k2

x

2m∗
+ αkx = EF

kx↓(1/2)
= −m∗α

~2
±

√(
m∗α

~2

)2

+
2m∗EF

~2

=⇒ kx↑(1)
− kx↓(1)

= 2m∗α
~2

energy spectrum
(Rashba-spin-orbit interaction)



SPIN-FET

1D-case:

output power:

P0 ∝

∣∣∣∣∣( 1 1
)( e

ikx↑(1)
L

e
ikx↓(1)

L

)∣∣∣∣∣ = 4 cos2

(
(kx↑(1)

− kx↓(1)
)L

2

)
differential phase shift:

∆Θ = (kx↑(1)
− kx↓(1)

)L =
2m∗αL

~2

∆Θ:

→ ∝ spin-orbit coefficient α (gate-voltage-controlled)

→ ∝ length of the semiconductor L

phase difference of π is achievable within a mean free path



SPIN-FET

Additional confining potential V(z) (Quasi-1D-case):

→ used to confine electrons in a wave guide

→ it restricts the angular spectrum of the electrons

=⇒ larger overall current modulation

H =

(
p2

x +p2
z

2m∗ + V (z) + α
~ px −α~ pz

−α~ pz
p2

x +p2
z

2m∗ + V (z)− α
~ px

)

=

(
p2

x

2m∗ + α
~ px 0

0
p2

x

2m∗ −
α
~ px

)

+

(
p2

z

2m∗ + V (z) −α~ pz

−α~ pz
p2

z

2m∗ + V (z)

)
= Hx + Hz



SPIN-FET

Quasi-1D-case with V (z) =

{
0 −L

2
≤ z ≤ L

2

∞ otherwise
finding eigenstates of H:

→ use unperturbed (α=0) eigenstates as a basis set:

Φm(x , z) = const · e ikx x · cos(kz (m) · z) =⇒ |m, kx〉

with 〈m`, kx`|m, kx〉 = δm`,m δkx`,kx ; m: subband index

energy eigenvalues: H(α = 0)|m, kx〉 = Em,kx |m, kx〉

Em,kx = εm +
~2k2

x

2m∗(
−
~2( ∂

2

∂z2 )

2m∗
+ V (z)

)
Φm(z) = εmΦm(z)

The two spins, |+〉 =

(
1
0

)
and |−〉 =

(
0
1

)
, are degenerated!



SPIN-FET

Quasi-1D-case

The Rashba term HR = α
~ (σzpx − σxpz ) couples the eigenstates of

H(α = 0):

〈m`, kx`, i |Hx + Hz |m, kx , j〉 with i , j ∈ [+,−]

non zero matrix elements when α 6= 0 :

〈m`, kx`,+|Hx |m, kx ,+〉 = 〈m`, kx`,+|
p2

x

2m∗
+
α

~
σzpx |m, kx ,+〉

=

(
~2k2

x

2m∗
+ αkx

)
δm`,m δkx`,kx

〈m`, kx`,−|Hx |m, kx ,−〉 = 〈m`, kx`,−|
p2

x

2m∗
+
α

~
σzpx |m, kx ,−〉

=

(
~2k2

x

2m∗
− αkx

)
δm`,m δkx`,kx



SPIN-FET

Quasi-1D-case

〈m`, kx`,±|Hz |m, kx ,∓〉 = 〈m`, kx`,±|
p2

z

2m∗
+ V (z)− α

~
σxpz |m, kx ,∓〉

=
α

~
〈m`|pz |m〉 δkx`,kx =

α

~
δm`,m±1 δkx`,kx

• Eigenstates of H:

→ involve linear combinations of different subbands

• subbands are sufficiently far apart in energy:

• neglect subband mixing

→ width of the confining potential well:

→ responsible for distance between subbands

→ has to be technically feasible



SPIN-FET

Quasi-1D-case
→ Neglecting intersubband mixing

=⇒ main effect of HR is to split the degeneracy between the two
spins:

• Em,k,s ' εm +
~2k2

x

2m∗ + αkxs s = −1 (spin up)

s = 1 (spin down)

• wave vectors k1 and k2 corresponding to the same energy
E for the two spins differ by:

k1 − k2 = 2m∗α
~2

(same result as discussed earlier for plane unguided waves)

• differential phase shift ∆Θ = 2m∗αL
~2

=⇒ independence of m,kx !



SPIN-FET

Quasi-1D-case
independence of m,kx for the differential phase shift ∆Θ!

=⇒ important advantage for device applications:

→ normally, quantum interference devices:

• single moded in order to obtain large effects

• low temperature

• low voltages

→ here:

• ∆Θ between the two spins is the same for all energies and mode
numbers and controlled by spin-orbit coupling coefficient α

• large percentage modulation of the current in multimoded
devices operated at high temperatures and large applied bias
may be possible



CONCLUSIONS



CONCLUSIONS

F TMR/GMR:

→ construction of nonvolatile RAM devices

F STONER MODEL

F CONTROL AND MANIPULATION OF SPIN VIA
RASHBA EFFECT

F SPIN-FET
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