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1. FOUNDATIONS

within non-relativistic quantum mechanics. The conditions under which special
relativity is important might seem far removed from ordinary semiconductors, but
electrons move at a significant fraction of the speed of light when they pass close to
a nucleus. This leads to an effect called spin-orbit coupling, which has a profound
etfect on the top of the valence band and therefore on the behaviour of holes. This
will be described in Section 2.6.3.

Returning to the problem at hand, we can define a density of states in k-space
such that N,p(k) 8% is the number of allowed states in the range & to k + 8k. It is
given by

Nip(k)dk = Ziak. (1.86)
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The factor of 2 accounts for the spin, L/2n is the density of points, and the range
8k cancels to leave Nyp(k) = L/m. This is proportional to the volume (length) of
the system, which makes sense: we would expect to double the number of states
if we doubled the size of the system. Usually one takes this factor out to leave a
density of states per unit length, which is nyp(k) = Nip(k)/L = 1 /m.

The next task is to turn this into a density of states in energy. Figure 1.7 shows
how the allowed values of %, which are evenly spaced, map to allowed values in
energy through the dispersion relation £ = &(k). These energies lie in a continuous
band for £ > 0 in a large system. The figure shows a parabola but the theory works
for a more general dispersion relation. The resulting values of energy get further
apart as k rises, so the density of states falls with increasing energy. A range §k in
wave number corresponds to a range in energy of 8 E = (dE /dk)sk. The number
of states in this range can be written in terms of n;5(k) or in terms of the density of

states in energy per unit volume rp(F). The two expressions must give the same
number of states, 50

dE
mp(E)SE = n]D(E)ﬁ(Sk = 2nyp(k)dk. (1.87)

212
E eo(B) = 1K
2my

- k
8n 6t 4n 2n o 2n 41 6n 8n

L L L L L L L L

FIGURE 1.7. Dispersion relation go(k) for free electrons, showing how the allowed values of k
map onto .
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The factor of 2 in front of n;p(k) arises because of the two directions of motion:
there is one range 8k for & > 0 and another for k < 0. Note that the same svinbot
np 18 used to represent the density of states in £ and £ this ts bad mathematics
but typical usage in physics, where one rapidly tends to run out of variants of # and
E to denote commonly used quantities. It shouldn’t lead to confusion provided that
the argument & or E is always included. Thus np(E) = (2/7)/(de/dk). This can
be simplified using the group velocity v = dw/dk = (1/h)(de/dk). giving

2

mp(£) = 2ho(E)

{1.88)
We shall see in Section 5.7.1 that the current depends on the product of the veloc-
ity and the density of states. Equation (1.88) shows that this is a constant in one
dimension, which in turn leads to a quantized conductance.

Substituting the velocity for the special case of free electrons gives
I [2m

nip(£) = —

. 1.89)
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The density of states diverges as E7'/2 as E — 0, a characteristic feature of one
dimension.

1.7.2 THREE DIMENSIONS

In three dimensions, put the electrons into a box of volume Q = L, x L, x L.
The wave functions are travelling waves in each direction with periodic boundan
conditions, just as in the one-dimensional case, and their product gives

1 1
Ginm(R) = —zmme—explithyx + kyy + ko2)] = —=exp(K-R).  (1.90)
nnt L»\- L_VL-_- X ) ,—Q
Remember our convention that upper-case letters are used for three-dimensional
positions and wave vectors. The product of three waves has been written as a three-
dimensional plane wave using the scalar product. Similarly, the allowed values of A
in each of the three directions can be combined into three-dimensional wave vectors
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, ) Lmon=0,=xI1,+2,.... (1.9n
These can be plotted as points in a three-dimensional K-space with (4. k.. k.) as
axes, where they form an evenly spaced rectangular mesh. Each unit cell encloses
volume (27 /L )2 /L,)(27w/L.) = (27)/ Q. Thus the density of allowed states
is N3p(K) = 282/(27)*, where the 2 accounts for spin. Dividing by the volume
gives the density of states in K-space per unit volume of the system in real space.
nap(K) = 2/(2m)3. This is again a constant, and generalizes in an obvious way to
d dimensions as ny(K) = 2/(2m)".
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FIGURE 1.8. Construction in K-space to calculate the density of states for free electrons in three
dimensions. The shells have radii K and K + § K. corresponding to energies £ and £ + d¢.

Now we need to derive the density of states as a function of energy. Consider free
electrons only, because the calculation is more complicated for a general function
e(K). Figure 1.8 shows two spheres about the origin in K-space, one with radius
K and the other with radius K + 8 K. The volume of the shell between these two
spheres is 4w K25 K. The number of states in the shell is found from the product of
this volume and the density of states n3p(K), giving (K2/72)8 K. The separation
8 K corresponds to a difference in energy of

dE n K
8F = ~——8K = —4K. 1.92
dK m (1.92)
The number of states in the shell is given in terms of the density of states in energy by
n(E)S E. Equating the two expressions yields n3p(E)SE = nip(E)YA2K/m)8K =
(K?/m?)5 K, whence

K
n I /3mE. (1.93)
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The square root is characteristic of three dimensions. Its singularity at the bottom
of the band is much weaker than the one-dimensional result of E~!/2, In general
the density of states shows a stronger feature at the bottom of the band in fewer
dimensions. Optical properties such as absorption are strongly influenced by the
density of states, and low-dimensional systems are preferred for optoelectronic
devices because their density of states is larger at the bottom of the band. The
density of states for free electrons in one, two, and three dimensions is plotted in
Figure 1.9. In all cases a low mass is associated with a Jow density of states.

The density of states for a three-dimensional crystal is more complicated because
the surfaces of constant energy in K-space are not spheres. Further singularities of
n(E) appear inside bands, and provide fruitful material for optical spectroscopy.
A simpler case arises if the energy depends on only the magnitude of K but not
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FIGURE 1.39. Densities of states for free electrons in one, two, and three dimensions.

its direction. In this case the surfaces of constant energy remain spherical and 1
derivation of n#(£) proceeds as before except for the form of £( A). For examp
the conduction band of GaAs is often modelled by the expression

KK

2ngme

(K[l + ae(K)] =

(1

This takes account of the fact that the band is not parabolic for high energies. w
a~0.6eV

1.7.3 A GENERAL DEFINITION OF THE DENSITY
OF STATES

A general definition of the density of states is often useful. Let the states of a syt
have energies g,. Then the density of states in energy can be written as

N(E)-_—Z(S(E—s,,). K

n

where §(£) is the Dirac §-function. This is the total density of states, not that
unit volume. We shall now justify this definition and see how it is related w
previous calculations.

First, it is clear that equation (1.95) makes sense only if we integrate over
because of the 8-functions. Consider

Ez Ez El
/ N(E)dE:/ ZS(E—&,,)dE:Zf S(E —eVdE. (1.
E Ey . " £y

This is illustrated in Figure 1.10. If the energy of a state # lies within the rang.
integration from £ to £, the integral over §( £ — &,) gives unity by detimtim
the energy ¢, lies outside the range of integration. on the other hand. there i
contribution because the weight of the §-function is concentrated entirelyv at £ =
Thus the integral gives | for all states in the range £ < ¢, < E>and zero tor th
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FIGURE 1.10. The ‘8-function’ definition of the density of states integrating to count the states
between £y and E3.

outside. Performing the sum next, we see that it adds up to the total number of states
between £ and E,. This is exactly what we would expect from an integral over
N(E), and shows that equation (1.95) is a valid definition of the density of states.
To confirm that it works, consider free electrons in one dimension again. In this
case we can iabel the states by their wave number & and the definition (1.95) becomes

N(E) =2 Z S[E — g9(k)]. (1.97)

=—00

The factor of 2 is for spin. Next, turn the sum into an integral, assuming a large
system. We have already seen how to do this: the density of states in k-space is
L /2m, so the sum becomes

N(E) = :—[;-/ S[E — gotk)]dk. (1.98)

-0

There is still a function inside the §-function, which is a nuisance, so change the
variable of integration from k to z = (k) = A*k?/2m. This requires

dk I [m
= — =—./— 1.
dk - dz P /22 dz, (1.99)
and the integral becomes
2L [
NEY=2 | D s(E=-d:z (1.100)
wh 0 2z

The 2 in the prefactor comes from the two signs of & for each value of the energy
z. Now the integral is trivial, as the only contribution is at z = E when £ > 0, and

we finally get
2L |m L /2m
—_ — — T ——— — l.l l
N(E) nhY2E nwhY E (1.10H

as before.



