
The Physics of Mesoscopic Systems

Dietmar Weinmann

E-mail: weinmann@ipcms.u-strasbg.fr

Institut de Physique et Chimie des Matériaux de Strasbourg

UMR 7504, CNRS-ULP
23, rue du Loess

67037 Strasbourg Cedex

France

March 30, 2005

Lectures held during the
Seventh Petra School of Physics

17–22 September 2000
at the University of Jordan

1



Abstract

An ongoing tendency in modern material science is to propose and
to investigate systems containing smaller and smaller structures. The
resulting systems approach the mesoscopic regime in which the quan-
tum phase coherence leads to important corrections to the electronic
properties of the devices. At the same time, microscopic details of the
sample, like the exact impurity configuration in disordered systems,
determine some quantitative features of the behavior. This can lead to
pronounced fluctuations of a quantity measured in different samples
which are macroscopically equivalent.

This aim of this series of lectures is to introduce the mesoscopic
regime and to review a selection of the most important effects ap-
pearing in mesoscopic systems. The theory of electronic transport
in mesoscopic samples is illustrated in the framework of the Lan-
dauer approach in which the conductance is determined by the scat-
tering properties of the sample. As an example for the importance
of electron-electron interactions for the conductance, we describe the
Coulomb blockade effect appearing in devices containing ultra-small
tunnel junctions or quantum dots. The importance of mesoscopic ef-
fects for basic research, as well as for applications in nanoelectronic
devices and for metrology, is stressed.
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1 Introduction to the Physics of

Mesoscopic Systems

At the end of the XXth century, a clear tendency towards nanos-
tructured systems appears in physical material science. This includes
semiconductor structures and magnetic materials, but also intrinsi-
cally nanostructured systems like biomaterials and macromolecules.
These smaller and smaller structures approach the so-called meso-
scopic regime in which quantum effects become relevant for the be-
havior of the materials. At the same time, considerable advances in
the controlled fabrication of submicron solid state structures, as well
as the common availability of low temperature facilities, have allowed
for a systematic investigation of artificially made structures whose
electronic properties are modified or even dominated by quantum in-
terference effects. This makes it possible to perform experiments in
the mesoscopic regime which directly probe quantum properties of
phase coherent many-body systems.

Good starting points to the studying of mesoscopic physics are
recent books on the subject by Y. Imry [1], S. Datta [2], and the
somewhat more advanced chapters in reference [3].

In the following, we present an elementary introduction to selected
aspects of the physics of mesoscopic systems.

1.1 The Mesoscopic Regime

The mesoscopic regime is the intermediate one between the quantum
world of microscopic systems (atoms or small molecules) and the clas-
sical world of macroscopic systems like large pieces of condensed mat-
ter. Mesoscopic systems typically consist of a large number of atoms,
but their behavior is considerably influenced by quantum interference
effects. This situates mesoscopic physics at the interface of statistical
physics and quantum physics.

The quantum phase coherence, needed for the appearance of in-
terference effects, is conserved only during a finite time τφ, called the
phase breaking time. The phase coherence is lost when the system
or its components under investigation interact with its environment,
as for instance by an electron-phonon scattering event. In electronic
conductors, the finite phase breaking time corresponds to a phase
breaking length Lφ over which the electrons can travel before their
phase coherence is lost.

Mesoscopic quantum effects appear when the typical time or length
scales of the system are smaller than the phase breaking time or length,
respectively. In many cases this means that the relevant system size
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Figure 1: The temperature dependence of the phase coherence time in GaAs,
measured in samples of different width W (from [4]).

L must be smaller than the phase coherence length

L < Lφ . (1)

For an electron, the phase coherence time/length is limited by
electron-electron and electron-phonon scattering. These processes
are important at high temperatures, but both types of scattering
are suppressed at low temperatures such that the phase coherence
time/length is strongly material and temperature dependent (see Fig-
ure 1).

It is important to note that only scattering processes during which
an excitation (a phonon, electron-hole excitation, etc.) of the environ-
ment is created or destroyed, lead to a loss of phase coherence. Such
scattering processes leave a trace of the particle in the environment
which can in principle be observed and is reminiscent of a measure-
ment of the trajectory of the particle. These processes are typically
inelastic and connected to a transfer of energy. However, processes
which alter the environment without energy transfer, e.g. by flipping
a spin can also lead to decoherence.

In contrast, the scattering of the electrons off static impurities is
always elastic. Even though the phase of the electrons may be modified
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in the scattering process, this happens in a well-defined way and does
not destroy the phase coherence effects. A more detailed discussion
of this important distinction between elastic and inelastic scattering
processes can be found in reference [1].

The mesoscopic regime is therefore characterized by small time
and/or length scales and low temperatures. When the temperature
is lowered, the phase coherence time/length increases and the meso-
scopic regime is extended to larger time/length scales. At sub-Kelvin
temperatures, the time and length scales in semiconductor samples
are of the order of picoseconds and micrometers, respectively.

Since in mesoscopic physics one is often dealing with small finite
systems at low temperatures, the electronic level spacing ∆ of the
discrete spectrum can become larger than the thermal energy kBT .
Then, the precise details of the spectrum and not only global quan-
tities like the mean density of states determine the electronic and
thermodynamic properties of the sample. However, the precise spec-
trum depends on the impurity configuration leading to fluctuations
of the observed quantities between macroscopically indistinguishable
samples. These fluctuations themselves are an interesting quantity to
study since the qualitative effects are often universal in the sense that
they do not depend on on microscopic details.

1.2 Prominent Mesoscopic Effects

In this section, we briefly present a selection of the most important
effects arising as a consequence of the quantum phase coherence of
the electronic wave functions in the mesoscopic regime. Many of
the most spectacular effects appear in samples of reduced dimension
like two-dimensional electron gases in semiconductor heterostructures,
one-dimensional systems (so-called quantum wires) and structures in
which the electrons are completely confined, the so-called quantum
dots. Most interesting for basic research and most promising in the
view of applications are the electronic properties of such systems and
we shall concentrate on them.

1.2.1 Aharonov-Bohm Oscillations

One of the most striking consequences of phase coherence is the pos-
sibility to observe Aharonov-Bohm oscillations in the conductance of
mesoscopic structures containing small normal metal rings [5]. At low
temperature, when the phase coherence length is larger than the cir-
cumference of the ring, the interference between the contributions of
an electron going through one arm of the ring and the same electron
going through the other arm of the ring is important. To the intrinsic
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Figure 2: Observation of Aharonov-Bohm oscillations in the conductance of
rings in a magnetic field. The figure shows (a) the conductance as a function
of the magnetic field, (b) its Fourier transform showing the periodicity of the
oscillations, and in the inset a picture of the sample (from [5]).

phase difference φ0 of the two paths one has to add the effect of the
magnetic field which leads to a phase shift given by

φB =
2πe

h

∮

d~s ~A =
2πe

h
Φ . (2)

The integral over the vector potential ~A is to be performed on a closed
path around the ring. This yields a phase shift proportional to the
magnetic flux Φ through the ring, given by the area of the ring mul-
tiplied by the (constant) magnetic field strength B perpendicular to
the plane of the ring. A component of the conductance (the ratio be-
tween the current through the sample and the applied voltage) is then
proportional to cos(φ0 +φB), leading to the observed h/e-periodic os-
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Figure 3: Hall-bar geometry. the longitudinal voltage Vx is measured between
two points along the same edge of the sample while the Hall voltage VH is
measured between points at opposite sides of the samples. The magnetic
field is applied perpendicular to the plane of the drawing.

cillations of the conductance of the device as a function of the magnetic
flux piercing the ring as shown in figure 2.

1.2.2 The Integer Quantum Hall Effect

One of the first and most spectacular observations of macroscopic
consequences of the phase coherence in the electronic properties of
solid state devices was the discovery of the integer quantum Hall effect
[6] by Klaus von Klitzing in 1980, rewarded with the Nobel prize in
1985. Von Klitzing used the two-dimensional electron gas formed in
a silicon MOSFET device. To observe the Hall effect, one drives a
current through the sample and measures the longitudinal voltage Vx

and the transverse Hall voltage VH (see figure 3), as a function of the
strength of the magnetic field applied perpendicular to the plane of
the two-dimensional electron gas.

The Hall effect predicts that when a conductor is placed in a mag-
netic field B, a transverse voltage between opposite lateral sides of the
sample proportional to the longitudinal current I can be measured,
given by

VH = RHI . (3)

Classically, using the Drude formula, one gets the Hall resistance

RH =
B

ens
(4)

with the two-dimensional electron density ns. The longitudinal re-
sistance Rx, calculated from the ratio of the voltage drop between
two points on the same side of the sample to the current I, within
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Figure 4: The magnetic field dependence of the longitudinal resistance (show-
ing peaks at strong magnetic field) and the Hall resistance (being linear in
the strength of the magnetic field according to the classical prediction and in-
creasing in steps at strong magnetic field) in the integer quantum Hall effect
regime. The values of the Hall resistance on the plateaus are RH = h/ie2.

the Drude theory, is unaffected by the magnetic field. This behavior
can be observed in the very left hand side of figure 4, in the regime
of weak magnetic field. When the experiment is carried out at very
low temperature in very strong magnetic field and using high mobility
samples, the behavior is however completely different (see figure 4).
The longitudinal resistance drops to zero except for a few values of the
magnetic field where peaks appear. The Hall resistance exhibits steps
at the positions where Rx is non-zero and plateaus of constant values
in between. The values of RH on these plateaus are given by h/ie2

with integer numbers i = {1, 2, 3, . . .}. It turns out that these values
are reproducible with great precision and extremely robust against
changing the chosen material, the size of the sample, or introducing
a small concentration of impurities. This has important implications
for the application of the quantum Hall effect in metrology where it
is used since several years as a resistance standard.

In order to understand the origin of these features, one has to
consider electrons in a two-dimensional system, subject to a strong
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magnetic field. In a perfectly clean system, within a (semi-)classical
picture, an electron moves on a so-called cyclotron orbit. These cy-
clotron orbits are circles of radius

rc =
mv

eB
, (5)

where m is the effective mass and v the velocity of the electron. rc

shrinks inversely proportional to the strength of the magnetic field
strength B. These cyclotron orbits become relevant for the behavior
of the system when they are not destroyed by scattering processes.
Thus, the condition

rc � l, Lφ (6)

with the mean free path l must be fulfilled. This is the case for pure
materials at low temperatures in strong magnetic fields.

The mesoscopic effect due to the phase coherence appears in this
case because the relevant length scale rc for the behavior of the elec-
trons becomes smaller than the phase coherence length even though
the total extension of the sample may be much larger. In fact, typical
quantum Hall effect measurements are done using samples of macro-
scopic dimensions, of the order of 1mm.

When the electrons move phase coherently on circular orbits, the
energies of the electrons are quantized. A full quantum calculation [2]
yields the so-called Landau levels, defining the allowed energies

En =

(

n+
1

2

)

~ωc , (7)

with the cyclotron frequency

ωc =
eB

m
. (8)

and the integer quantum number n. The energies of the Landau levels
increase linearly with the strength of the magnetic field. They are
highly degenerate and their degree of degeneracy per spin orientation
is

Nd = ABe/h , (9)

where A is the area of the sample. Nd increases with the magnetic
field strength B. The number of one-particle states per Landau level
equals the number of flux quanta Φ0 = h/e piercing the sample.

At low temperatures and high magnetic field, kBT � ~ωc, and only
the Landau levels below the Fermi energy are occupied. The filling
factor ν gives the number of occupied Landau levels and is equivalent
to the number of electrons per flux quantum inside the sample. When

10



Figure 5: The Hall resistance and the longitudinal resistance in the fractional
quantum Hall effect regime, showing additional plateaus and resistance min-
ima, respectively, at fractional values of the filling factors.

the magnetic field is increased, one Landau level after the other crosses
the Fermi energy and the filling factor decreases. The values of the
magnetic field where the Landau levels are depopulated coincide with
the positions of the peaks in the longitudinal resistance Rx and the
steps in the Hall voltage RH. While the Fermi energy is between two
Landau levels, the longitudinal resistance vanishes and RH is constant.
These features can be explained within the edge state picture which
we shall present in section 2.3.3.

For a more advanced introduction to the integer quantum Hall
effect, we refer the reader to the recent reference [1]. A detailed dis-
cussion of the earlier work on the integer and the fractional quantum
Hall effect can be found in reference [7]. A recent overview can be
found in reference [8].

1.2.3 The Fractional Quantum Hall Effect

Going to stronger magnetic fields and to lower temperatures in two-
dimensional electron gases, one can observe additional plateaus of the
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Figure 6: The reproducible fluctuations of the conductance as a function of
the magnetic field for (a) a gold wire with a diameter of 0.8µm, (b) a narrow
channel in the two-dimensional electron gas of a silicon MOSFET, and (c) a
numerical simulation within the Anderson model. Even though the absolute
values of the conductance are very different, the amplitude of the fluctuations
is of the same order (from [12]).

Hall resistance at fractional filling factors like ν = 1/3 (see figure 5).
This so-called fractional quantum Hall effect has been discovered [9]
in 1982. The features at fractional filling can be traced back to the
existence of correlated collective quasi-particle excitations [10]. Thus,
in contrast to the integer quantum Hall effect, the Coulomb interaction
between the electrons is essential for the explanation of the fractional
quantum Hall effect. The quasi-particles have fractional charge (for
instance e/3 at ν = 1/3). From shot noise measurements [11], it
could be confirmed recently that the charge carriers at ν = 1/3 in the
fractional quantum Hall effect regime have indeed charge e/3. After
this confirmation, Tsui, Störmer and Laughlin received the 1998 Nobel
prize for the discovery and interpretation of the fractional quantum
Hall effect. For a review of the early work on the fractional quantum
Hall effect, see reference [7]. A more recent introduction can be found
in reference [8].

1.2.4 Universal Conductance Fluctuations

The conductance of disordered wires in the mesoscopic regime exhibits
pronounced fluctuations as a function of external parameters like the
magnetic field or the Fermi energy (see figure 6). These fluctuations
were discovered [13] in the low-temperature (below 1K) conductance of
the inversion layer in a disordered silicon MOSFET. The fluctuations
are perfectly reproducible and represent a fingerprint of the sample.
The origin of the fluctuations lies in the interference of different ways
the electrons can take when traveling through the sample, as sketched
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Figure 7: Possible paths of an electron through a disordered wire, with elas-
tic scattering processes at impurities. The interference of such paths is influ-
enced by a magnetic field or the value of the Fermi wave vector, leading to
fluctuations of the conductance in the mesoscopic regime.

in figure 7.
In a macroscopically equivalent sample with a microscopically dif-

ferent impurity configuration, the fluctuations are qualitatively similar
but their precise features can be completely different. The most strik-
ing feature of the conductance fluctuations is however the fact that
their typical amplitude is universal in the diffusive regime [12]. Inde-
pendently of the mean value of the conductance, the fluctuations are
always of the order of the conductance quantum e2/h and depend only
on the basic symmetries (like time-inversion symmetry) of the system
[14]. This can be traced to the repulsion of the eigenvalues of random
transfer matrices. For further reading, we recommend reference [1]
and chapter 1 of reference [3].

1.2.5 Conductance Quantization in Quantum Point

Contacts

A point contact is a very narrow link between two conducting mate-
rials. Such a link can be formed by imposing a confining constriction
in a wire or by forcing the electrons to pass through a narrow chan-
nel defined electrostatically when they are driven from one two- or
three-dimensional region of the sample to the other. In the case of
very narrow constrictions of width W , narrower than the mean free
path and the phase coherence length (W � l, Lφ), such a constriction
is called ballistic quantum point contact. The conductance through
ballistic quantum point contacts (see figure 8) was discovered [16, 15]
to be quantized in units of 2e2/h. An overview on transport through
ballistic point contacts and the connection to the quantum Hall effect
can be found in reference [17].

Such experiments require typically sub-Kelvin temperatures for
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Figure 8: The conductance through a quantum point contact as a function of
the gate voltage. The conductance exhibits clear steps of height 2e2/h (from
[15]).

constrictions of W < 1µm in two-dimensional electron gases defined in
semiconductor heterostructures. However, it was recently shown [18]
that the conductance quantization can be observed using an extremely
simple setup. When two macroscopic metal wires touching each other
are separated, the conductance of this contact decreases in quantized
steps in the last fractions of milliseconds of the separation. These
steps can be observed at room temperature using a fast oscilloscope.
The contact region seems to be of atomic size before the contact is
lost completely such that even the small phase coherence length at
room temperature is large enough to observe the mesoscopic effect of
the quantization of the conductance.

1.2.6 Persistent Currents in Mesoscopic Rings

Electrons in mesoscopic rings can support a current around the ring
in thermodynamic equilibrium, even at zero temperature when only
the many-body ground state is occupied. This current depends on the
magnetic flux Φ piercing the ring and cannot decay dissipatively. It
therefore flows forever even in normal conducting materials and this
is why it is called persistent current. Persistent currents have been
predicted in the early days of quantum mechanics by Hund [19], but
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Figure 9: An ideal one-dimensional ring, pierced by the magnetic flux Φ.

their experimental relevance for mesoscopic systems has been recog-
nized only much later [20]. For a detailed introduction see reference
[1], for a review on theoretical aspects we refer the reader to reference
[21].

Let us consider an ideal one-dimensional ring of circumference L�
Lφ, as shown in figure 9. It is well known that a magnetic field cannot
affect the behavior of one-dimensional systems. This however does
not hold when the one-dimensional system is closed to a ring. In this
topology, the flux Φ threading the ring leads to a phase shift of 2πΦ/Φ0

accumulated by an electron traveling around the ring, Φ0 = h/e being
the flux quantum. Using a gauge transformation, this phase shift can
be cast [22] into the boundary condition, eliminating the magnetic
vector potential from the Schrödinger equation for the electrons and
leading to generalized periodic boundary conditions

ψ(x = 0) = exp(i2πΦ/Φ0)ψ(x = L) (10)

for the one-particle wave-functions ψ(x). This immediately implies
that all the electronic properties of the ring must be periodic in the
magnetic flux, the period being the flux quantum Φ0, similar to the
Aharonov-Bohm effect discussed in section 1.2.1.

The wave-functions of non-interacting electrons in a clean ring are
plane waves

ψ(x) ∝ exp(ikx) . (11)

The boundary condition of equation (10) restricts the possible wave-
vectors k to the values

kn =
2π

L

(

n− Φ

Φ0

)

(12)

with n = {0,±1,±2,±3, . . .}. The flux-dependence of the correspond-
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/ 0
-1/2 1/20

Figure 10: Flux dependence of the lowest one-particle energies in a ring, for
−3 ≤ n ≤ 3 (see equation (13).

ing one-particle energies

En =
~

2k2
n

2m
=

1

2m

[

h

L

(

n− Φ

Φ0

)]2

(13)

is plotted in figure 10. The persistent current at zero temperature is
then given by the sum of the currents e~kn/mL of the lowest levels
up to the electron number in the ring. The persistent current can be
written as

Ip = −dE

dΦ
(14)

with the total energy of the electrons E. Since at a given value of
Φ the sign of the derivatives of the one-particle energies with respect
to the magnetic flux oscillates with the quantum number n, the total
persistent current is diminished by cancelations of the contributions of
adjacent levels. The resulting current I1d,clean

p at large particle number
is dominated by the last electron (at the Fermi level) and of the order
of

I1d,clean
p ∼ evF

L
(15)

with the Fermi velocity vF.
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Figure 11: Experimental result for the magnetic field dependence of the
magnetic susceptibility of a single disordered mesoscopic metal ring. (a):
raw data, the arrows indicate the maxima of the h/e-oscillations. (b): after
subtraction of the background signal. (c): differential signal consistent with
(b). (d): Fourier transform confirming the period h/e of the flux dependence
(from [23]).

In disordered rings of finite width with an elastic mean free path
l � L, the theoretical value even for non-interacting electrons is much
more difficult to obtain. In the diffusive regime, one expects [24, 25, 26]
a persistent current of the order of

Idiff
p ∼ evF

L

l

L
, (16)

which is reduced by a factor of l/L with respect to the clean case.
The experimental value of the persistent current in diffusive rings

[27, 23] is however much larger (at least an order of magnitude) than
this theoretical prediction. The discrepancy is believed to be due to
the electron-electron interaction, which was neglected in the derivation
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of equation (16). While the electron-electron interaction seems to
play an essential role, the disorder in the sample is also important:
Interactions cannot affect the persistent current in clean rotationally
invariant 1d rings [28, 29, 30], and the non-interacting result (15) is
consistent with the experimental one for a clean semiconductor ring
in the ballistic regime [31].

This has generated a large theoretical activity, dealing with the
combined effect of interactions and disorder on the enhancement
of persistent currents in mesoscopic rings (for an overview see e.g.
[32, 1, 21] and references therein). Even though different theoretical
approaches suggest an increase of the persistent current in disordered
samples due to repulsive Coulomb interactions, a quantitative under-
standing of the experiments is still lacking.
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2 Theory of Electronic Transport in

Mesoscopic Structures

In this section we introduce the reader to the theory of electronic trans-
port in mesoscopic systems. After a presentation of the linear response
formalism, we shall discuss the Landauer formalism in more detail and
discuss a few applications of the approach to experimental situations.
At the end, we will introduce to the concepts of resonant and sequen-
tial tunneling in double-barrier structures. For further reading on the
theory of quantum transport, we recommend [2] and the recent book
[3].

2.1 Breakdown of Classical Transport

Classically, the electrical conductance G of a block of a given material
is described by

G =
I

V
= σ

A

L
, (17)

the cross-section A and the length L containing the only form and
size dependence and σ being the material-dependent conductivity. G
is simply the inverse of the resistance. From Drude’s theory [33] one
gets

σ = e2nτs (18)

with the charge density n and the momentum relaxation or scattering
time τs. The size dependence of equation (17) implies the well known
laws according to which the resistance of resistors in series is additive
while the conductance is additive when the conductors are parallel in
the circuit.

However, the description of electrical transport by equations (17)
and (18) fails when the size of the system (longitudinal or lateral)
becomes smaller than or comparable to the size of at least one of the
following characteristic length scales:

• The Fermi wavelength λF. At this scale the quantum nature of
the electrons dominates their behavior and classical descriptions
fail.

• The mean free path l = vFτs. In metals it is often of the or-
der of 10nm, while it can be as large as 100µm in extremely
pure semiconductors at milli-Kelvin temperatures. Below this
length scale, the transport becomes ballistic and the classical de-
scriptions (which assume diffusive motion of the electrons) break
down.
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• The phase coherence length Lφ, which is essentially due to in-
elastic scattering and strongly temperature dependent. At this
length scale, quantum mechanical interference effects appear and
modify the classical behavior of the sample.

Since the classical description of electronic transport cannot be
applied to individual samples in the mesoscopic regime, we present
now approaches which take into account the quantum nature of the
electrons and do not neglect quantum mechanical interference effects.

2.2 Linear Response Theory

Quantum mechanical linear response theory provides a general for-
malism for the calculation of the frequency dependent conductance of
a quantum system. It allows to include the effect of a driving field
and, at least in principle, to treat inelastic processes and interactions
in mesoscopic systems in a systematic manner [34].

The linear response theory for the electrical conductivity is pre-
sented in numerous textbooks, e. g. in [35, 36]. However, in mesoscopic
systems the electric field is varying over the spatial extension of the
sample and geometrical confinement effects dominating the behavior
destroy the translational invariance of the problem. This requires
a non-standard form of the Kubo formula. We therefore derive the
conductance formula needed for calculating the frequency dependent
conductance of mesoscopic systems in linear response to an electric
field, following references [37, 38].

We start from the Hamiltonian

Htot = H +H ′ , (19)

where

H =
∑

i

(

1

2m
~p2

i + U(~xi)

)

(20)

describes the quantum system of non-interacting particles in the po-
tential U(~x). The part H ′ takes into account the interaction with the
electric field that is assumed to be infinitesimally weak and treated in
lowest order. The sum runs over all the electrons in the system. e and
m are the charge and the (effective) mass of the electrons, respectively.
Expressing the electric field

~E(~x, t) = −∂
~A(~x, t)

∂t
(21)

via the vector potential, we use the Coulomb gauge ∇ ~A = 0 and set
the electrostatic potential Φ = 0. The current density operator can
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be written in the form

~j(~x) =
e

2m

∑

i

[~pi, δ(~x− ~xi)]+ , (22)

where [. . . , . . .]+ denotes the anticommutator. We have to mention
that we have omitted a diamagnetic term which is of no importance
for the dissipative conductance we are going to calculate. This form
of the current density operator leads to the usual result for the matrix
elements in space representation

~jij(~x) := 〈i | ~j(~x) | j〉 =
e~

2im
(ψj(~x)∇ψ∗

i (~x) − ψ∗

i (~x)∇ψj(~x)) (23)

with the eigenfunctions of the unperturbed Hamiltonian ψi. The low-
est order term in the vector potential entering the perturbing Hamil-
tonian is

H ′ = − e

m

∑

i

(

~pi
~A+ ~A~pi

)

(24)

and can be expressed as

H ′ = −
∫

d3x ~A(~x, t)~j(~x) . (25)

To calculate the thermal expectation value of the current, we use the
density operator ρ, whose time evolution is governed by the Liouville–
von Neumann equation

i~
∂ρ

∂t
= [Htot, ρ] . (26)

We assume adiabatic switching on of the perturbation by a monochro-
matic field

~A(~x, t) =
i

ω + iη
~E(~x)e−i(ω+iη)t . (27)

The (infinitesimal) imaginary part of the frequency iη guarantees the
vanishing of the electric field at t → −∞. Therefore, the appropri-
ate initial condition at t = −∞ for the solution of (26) is thermal
equilibrium described by

ρ0 =
∑

i

f(Ei) | i〉〈i | . (28)

The eigenstates | i〉 are associated with the corresponding eigenener-
gies Ei of the unperturbed Hamiltonian H. We note

f(E) =
1

exp[β(E −EF)] + 1
(29)
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the Fermi–Dirac distribution function with the inverse temperature
β = 1/(kBT ) and the Fermi energy EF. Writing ρ(t) = ρ0 + ρ′(t), and
keeping only terms linear in the perturbation, the Fourier transform
of (26) gives

~ωρ′(ω) = [H, ρ′(ω)] + [H ′(ω), ρ0] . (30)

Solving for ρ′(ω) in the basis of the unperturbed eigenstates, one finds
the matrix elements

ρ′ij(ω) =
f(Ej) − f(Ei)

Ej −Ei + ~(ω + iη)
H ′

ij(ω) . (31)

The thermal expectation value for the current density is the trace over
the current density operator weighted with the density operator

〈~j(~x, t)〉 = Tr (ρ0j(~x, t)) + Tr
(

ρ′(t)j(~x, t)
)

. (32)

The first (equilibrium) term can be shown to vanish and the evaluation
of the second one using (31) with (25) and (27) gives the result

〈~j(~x, ω)〉 =

∫

d3x′σ̃(~x, ~x′, ω) ~E(~x′, ω) (33)

with the nonlocal, frequency–dependent conductivity tensor

σ̃(~x, ~x′, ω) = (−i)
∑

i,j

f(Ej) − f(Ei)

ω + iη

~jij(~x)~jji(~x
′)

Ej −Ei + ~(ω + iη)
. (34)

This result containing two current density matrix elements represent-
ing a current–current correlation function can be interpreted in terms
of electron–hole excitations created at x′, propagating through the
system and recombining at x. The dissipative conductivity can be
defined using the density of absorbed power averaged over one period

p(~x, ω) =
ω

2π

t0+2π/ω
∫

t0

dt ~E(~x, t)〈~j(~x, t)〉 . (35)

Solely the real part of the conductivity contributes to the absorbed
power. Thus, the dissipative conductivity is

σ(~x, ~x′, ω) = Re[σ̃(~x, ~x′, ω)] . (36)

For any finite frequency, the real part of (34) is given by

σ(~x, ~x′, ω) = −π
∑

i,j

f(Ej) − f(Ei)

ω
~jij(~x)~jji(~x

′)δ(Ej −Ei + ~ω) (37)

in the limit η −→ 0.
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2.2.1 Definition of the Conductance

In order to determine the conductance, the spatial shape of the ap-
plied electric field has to be fixed. Then, the frequency dependent
current can be calculated and related to the voltage drop. We now
consider a quasi–one dimensional wire and an electric field is taken in
the longitudinal direction described by the coordinate x (~x = (x, x⊥)).

The conductance is defined via the absorbed power [38, 39, 40]

Γ(ω) =
2P (ω)

V 2
. (38)

The energy absorption rate

P (ω) =
ω

2π

t0+2π/ω
∫

t0

dt

∫

dxE(x, t)〈j(x, t)〉 (39)

is an average over one period T = 2π/ω of the driving field and the
voltage is V =

∫

dxE(x).
Due to the presence of quantum coherence, the dc-limit of the con-

ductance does not depend at all on the details of the external electric
field and only the voltage drop between the reservoirs determines the
current. In contrast, at finite frequencies, the conductance depends
sensitively on the shape of the electric field. In addition, to evaluate
the conductance using the linear response formalism, all the wave-
functions must be known explicitly. This information is often difficult
to obtain, but linear response theory is rather systematic and general.
We discuss in the next section the Landauer approach which is very
useful and intuitive in the dc-limit, but difficult to generalize to finite
frequencies or to systems of interacting particles.

2.3 The Landauer Approach

The approach of Landauer [41] (for a recent introduction see [2]) to
the conductance of mesoscopic systems is particularly intuitive. It
describes the conductance of a quantum system in terms of its scat-
tering properties. The setup one has in mind is sketched in figure 12.
The quantum system under consideration is connected to two reser-
voirs left and right of the system. The reservoirs are assumed to be
macroscopic and in thermal equilibrium. They are therefore described
by only two parameters, the temperature and the chemical potential.
The difference between the chemical potentials µ1 and µ2 in the left
and right reservoir is the applied voltage eV = µ1 − µ2. As connec-
tion between the reservoirs and the quantum system one assumes ideal
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Figure 12: The idea of the Landauer approach to the conductance: A meso-
scopic system is connected via ideal leads to reservoirs. The reservoirs are
described by the chemical potentials µ1 and µ2. The conductance is expressed
in terms of the scattering properties (scattering matrix S) of the system for
the plane waves in the leads.

leads without any impurities or internal structure. These leads can be
perfectly one-dimensional wires or quasi one-dimensional systems with
a constant cross-section. The important property of the leads is that
the electrons traveling within them are plane waves in longitudinal
direction and suffer no backscattering whatsoever.

The properties of the quantum system are then described by its
scattering matrix S in the basis of the plane waves inside the leads. If
the dominant process is the reflection of an incoming wave back into
the initial lead, the system is a poor conductor. If, in contrary, most
of the incoming electrons are transmitted to the other reservoir, the
conductance is large. Thus, the conductance of a quantum system is
determined by its scattering properties.

2.3.1 One-Channel Two-Point Conductance

Let us consider the simplest case of perfect one-dimensional leads.
Then, the propagating states that travel towards the quantum scat-
terer are ∝ a exp(ikx) in the left lead (moving rightwards) and
∝ b exp(−ikx) in the right lead (moving leftwards). The scattered
electrons leaving the scatterer are described by the plane waves
∝ c exp(−ikx) in the left lead (moving leftwards) and ∝ d exp(ikx)
in the right lead (moving rightwards). The amplitudes c and d of the
scattered waves are related to the amplitudes of the incident waves by
the scattering matrix S:

(

c
d

)

= S

(

a
b

)

. (40)
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In the simple one-dimensional case, the scattering matrix can be writ-
ten in the form

S =

(

r t′

t r′

)

(41)

with (in general complex) transmission and reflection amplitudes t, t′

and r, r′, respectively. The transmission and reflection probabilities
are then given by T = |t2| and R = |r2|, respectively. Since incident
electrons must be either reflected or transmitted, probability conser-
vation implies

T +R = 1 . (42)

More generally speaking, this is a consequence of current conservation
which can be written as

∣

∣

∣

∣

(

c
d

)
∣

∣

∣

∣

2

=

∣

∣

∣

∣

(

a
b

)
∣

∣

∣

∣

2

. (43)

This is equivalent to the requirement of an unitary scattering matrix
S (fulfilling SS+ = 1). In the case of time reversal and spin rotation
symmetry, more restrictions on the scattering matrix exist which re-
quire S to be a symmetric matrix. For the matrix of equation (41),
the requirements can be fulfilled by choosing t and r real, t′ = t and
r′ = −r.

The current flowing from the left to the right reservoir can then
be calculated as the density of electrons in the left lead 2ρ(E)f1(E)
times the current ev(E)T (E) carried into the right reservoir at the
same energy, integrated over all energies, yielding

I1→2 = 2

∫

∞

0
dE ρ(E)f1(E) ev(E)T (E) . (44)

Here, the prefactor 2 takes into account the spin degree of freedom
and

ρ(E) =

√

m/2E

h
(45)

is the energy dependent density of states for one spin direction in a
one-dimensional system. The occupation probability of these states is
described by the Fermi-Dirac distribution

f1(E) =
1

1 + exp[(E − µ1)/kBT ]
. (46)

Note that there is no Pauli-blocking factor (1 − f2(E)) in equation
(44), taking into account the occupation of the states in the right
reservoir. This is because the states carrying the current are coherent
scattering states which are extended through the whole system, being
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filled by the left reservoir. This of course breaks down in the presence
of dissipation [42] causing phase breaking processes while electrons
travel from one reservoir to the other. The energy dependence of the
velocity of an electron in one dimension is given by

v(E) =
√

2E/m , (47)

while the transmission probability T (E) remains the only system-
dependent property in equation (44).

Plugging the expressions (45) and (47) for the density of states
and the velocity of the electrons in the leads into equation (44), the
energy and mass dependences of the density and the velocity cancel
each other and one obtains

I1→2 =
2e

h

∫

∞

0
dE f1(E)T (E) . (48)

By symmetry, the current flowing from the right to the left lead is
given by

I2→1 =
2e

h

∫

∞

0
dE f2(E)T (E) (49)

and the total current can be obtained from the difference

I = I1→2 − I2→1 =
2e

h

∫

∞

0
dE T (E)(f1(E) − f2(E)) . (50)

In the case of low temperature, the Fermi-Dirac distributions (46)
can be approximated by a step function fi(E) ≈ Θ(µi − E) and the
resulting integral is restricted to the vicinity of the Fermi energy EF

at low voltage V = (µ1 − µ2)/e → 0. In these limits, the integral in
(50) can be evaluated and one obtains the current

I =
2e2

h
V T (EF) (51)

and the conductance

G =
2e2

h
T (EF) . (52)

Equation (52) is the so-called one-channel two-point Landauer for-
mula.

Some years ago, there have been intensive discussions whether or
not in the genuine four-probe Landauer formula [41, 43]

G =
2e2

h

T

1 − T
(53)

the denominator should be used. The different formulas were found to
correspond to different experimental setups [44]. While the four-probe
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Figure 13: Two-probe setup (a) versus four-probe setup (b). In the two-
probe case, the voltage is taken in the reservoirs yielding V = (µ1−µ2)/e. In
the four-probe case, the voltage is measured in the leads immediately before
and after the scatterer.

formula describes a conductor connected via ideal one-dimensional
leads to reservoirs and the voltage is measured across the sample with-
out the leads (figure 13, right), the two-probe formula (52) corresponds
to measuring both, voltage and current via contacts well inside the
reservoirs (figure 13, left).

The four-probe Landauer formula (53) has never been justified by a
decent linear response calculation. In contrast, the two-probe version
(without the denominator 1−T ) is recovered by the dc–limit of linear
response theory. This can be shown for very general situations [37].
Experimentally, it is practically impossible to measure the voltage
difference in the leads directly before and after the sample without
disturbing the phase coherence of the transport between the reservoirs
[45]. We therefore concentrate on the two-probe version of the formula
in the following.

Let us consider a perfect one-dimensional conductor with transmis-
sion probability T = 1. In this case, the two-probe Landauer formula
(52) yields the conductance

G =
2e2

h
, (54)

corresponding to a finite resistance of h/2e2, half of the resistance
quantum

h

e2
≈ 26kΩ (55)

arising per spin direction. The question where this resistance comes
from and how a perfect conductor can have a finite resistance has lead
to controversial discussions [46]. Since no backscattering inside the
ideal one-dimensional conductor is taken into account, this resistance
arises solely from the contact resistance between the reservoirs and
the ideal wire. For a more detailed discussion, see [1].
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Figure 14: Two-dimensional lead of width W . The transverse modes are
quantized by the lateral confinement.

2.3.2 Multi-Channel Two-Point Conductance

A more realistic situation is the one of quasi one-dimensional leads of
finite cross-section connecting the quantum scatterer to the reservoirs.
We discuss now the simplest example of a two-dimensional strip along
the x-axis having the width W in y-direction, as sketched in figure 14.
Assuming a perfect lead, the confinement potential

U(x, y) = U(y) (56)

only depends on the transverse coordinate y. Then, the Schrödinger
equation

− ~
2

2m
∆ψ(x, y) + U(y)ψ(x, y) = Eψ(x, y) (57)

can be separated and one gets as solutions the product wave functions

ψ(x, y) ∝ exp(ikx)φn(y) (58)

and the corresponding energies

Ek,n =
~

2k2

2m
+En , (59)

where the φn(y) and En are the one-dimensional eigenfunctions and
the eigenenergies, respectively, of confined particles in the transverse
potential U(y). The longitudinal part, in contrast, reflects free prop-
agation with wave-number k along the x-direction. The quantized
transverse parts of the wave-functions are analogous to the electro-
magnetic modes in wave-guides and are called channels or transverse
modes in this context.

The dispersion relation (59) exhibits several branches, one per
transverse quantum number n. Each branch is equivalent to an ideal
one-dimensional system except for the energy offset En. Neglecting
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the interaction between the electrons, the total zero-temperature cur-
rent through a quantum scatterer which is connected to reservoirs by
multi-channel leads is then a sum over all occupied channels in the
left and right lead

G =
2e2

h

∑

n,m

Tn,m , (60)

with Tn,m being the probability of an incoming electron in channel
n in the left lead to be transmitted to the channel m in the right
lead. Equation (60) is called the multi-channel two-probe Landauer
formula. Note that the sum runs only over occupied channels with
En, Em < EF, since channels with an offset energy above the Fermi
energy cannot contribute to the transport.

It is instructive to consider a perfect quasi one-dimensional con-
ductor with

Tn,m = δn,m (61)

for which each channel is perfectly transmitted and no scattering from
one channel to another is allowed. Then, the sum in equation (60)
reduces to the number of occupied channels Nc with an offset energy
En lower than the Fermi energy and one gets the conductance

G =
2e2

h
Nc (62)

of a quantum wire. This conductance is quantized in units of 2e2/h.
Since the offset energies En increase when the width of the wire W
is reduced, the conductance of a quantum wire is expected to vary
in steps of 2e2/h when the width is changed. This is an important
ingredient for the understanding of the conductance quantization in
quantum point contacts (see section 1.2.5).

For the description of the currents in more complicated setups
with more than two reservoirs, a generalization of the two-terminal
two-point Landauer formula to multi-terminal devices was derived by
Büttiker [47].

2.3.3 Edge States and Quantum Hall Effect

The Landauer concept of formulating the phase coherent transport
in a mesoscopic sample is very useful for explaining the electronic
behavior of a variety of systems including quantum wires and quantum
point contacts. Its application to a two-dimensional electron in a
strong perpendicular magnetic field is also very instructive and plays
an important role in the understanding of the quantum Hall effect (see
section 1.2.2).

29



Figure 15: Classical trajectories of electrons in a strong magnetic field. Lo-
calized cyclotron orbits occur in the bulk of the sample. At the edges of the
sample, skipping orbits lead to a propagation of the electrons along the edge.

As discussed in section 1.2.2, the strong magnetic field leads to
the formation of Landau levels. One picture for explaining features
of the quantum Hall effect invokes the presence of a small impurity
concentration in the sample [48, 1]. This leads to a small broadening
of the Landau levels with strongly localized states in the tails and
contributions to a finite current only in the center of the Landau level.
While this helps to explain the finite width of the Hall resistance,
another more intuitive picture has been developed, according to which
the edges of the sample play a crucial role for the currents flowing in
the quantum Hall effect (for a review see [49], for an introduction [2]).
This is the so-called edge-state picture we will briefly present in this
section.

It is instructive to consider the classical trajectories of electrons
moving in a clean sample subject to a strong magnetic field. They are
drawn schematically in figure 15. In the bulk of the sample, the classi-
cal trajectories are closed cyclotron orbits which cannot contribute to
the transport through the sample. In contrast, the trajectories near
the edges of the sample are reflected there and one immediately re-
alizes the fundamental difference: On the resulting so-called skipping
orbits, the electrons travel along the edges, thereby leading to a finite
current flowing through the sample. In a quantum mechanical picture,
the breaking of the translational symmetry by the consideration of the
finite size of the sample modifies the Landau levels. States localized
close to the edges correspond to higher energies than the unmodified
states in the bulk which are still described by equation (7). There-
fore, even when the Fermi energy lies between two Landau levels, the
part close to the edge which is bent upwards crosses the Fermi energy
and gives rise to edge channels. There, an electron staying close to
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Figure 16: A voltage probe. The edge channels coming from the left hand
side enter the probe while the channels leaving the probe travel to the right
hand side.

the edge can travel through the sample. However, as suggested by
the skipping orbits, an edge channel can support only current in one
direction, determined by the orientation of the magnetic field. The
channels at the opposite edge support current flowing to the other
direction.

Since exactly one edge channel per Landau level and spin is formed
(provided the Fermi energy is above the bulk Landau level energy),
the number of occupied Landau levels gives directly the number of
channels carrying current along the edges. When the width W of the
sample is much larger than the cyclotron radius rc (this is well ful-
filled at strong magnetic field in not too narrow samples), the overlap
between edge channels corresponding to opposite sides of the sample
and therewith the backscattering is exponentially suppressed. This
means that an electron which starts to travel along an edge channel is
transmitted through the sample and never reflected. Therefore, edge
channels in the quantum Hall effect regime are perfect ballistic chan-
nels with transmission T = 1. The multi-channel Landauer formula
(62) for an ideal wire can be applied with the number Nc of channels
being given by the number of occupied Landau levels.

A voltage probe attached to one side of the sample is drawn
schematically in figure 16. In this example, the current Iin of elec-
trons entering the voltage probe comes exclusively from the left where
the electrons have left a reservoir with chemical potential µ1. The
current Iout of electrons leaving the voltage probe goes to the right
where the electrons enter the other reservoir with chemical potential
µ2.

Now, the voltage probe can itself be considered as a reservoir where
the chemical potential µV is adjusted such that the net current flow
Iin − Iout vanishes. The resulting chemical potential determines the
measured voltage V = µV /e. Since the edge channels support current
in only one direction, the current in the edge channels depends only
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A B

C D

Figure 17: Hall geometry with the voltage probes A, B, C, and D. Due to
the edge channel directions, A and B see the chemical potential µ1 while the
probes C and D give µ2.

on the chemical potential of the reservoir in which they start. There
is no dependence on the chemical potential of the reservoir towards
which they are traveling. Thus, for the example of figure 16, one has

Iin = I(µ1) and Iout = I(µV ) , (63)

implying immediately µV = µ1. Therefore, all the voltage probes
on the same side of the sample measure the same chemical potential
which is determined by the reservoir where the edge channel starts.

In a Hall measurement (see figure 17), this means that the chem-
ical potentials measured by the voltage probes A and B is µ1 and
the chemical potential measured at C and D is µ2. Therefore, the
longitudinal voltage drop

Vx = VA − VB = 0 (64)

vanishes while the Hall voltage measured across the sample is given
by

VH = VA − VC =
µ1 − µ2

e
. (65)

The longitudinal current carried by the edge states is obtained from
the ideal ballistic wire Landauer formula to

Ix =
2e2

h
Nc

µ1 − µ2

e
. (66)
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Figure 18: Sketch of a double barrier structure. Without interaction, the
electrons in the leads are characterized by the chemical potentials µ1 and µ2,
while quasi-bound states are formed between the barriers.

From equations (64), (65), and (66), one gets the longitudinal and
the Hall resistance

Rx =
Vx

Ix
= 0 and RH =

VH

Ix
=

h

2e2
1

Nc
, (67)

describing essential features of the quantum Hall effect like the value
of the Hall resistance plateaus and the vanishing of the longitudinal
resistance. The high metrological precision of the measured Hall volt-
age and the independence of its values on the sample geometry can
be traced back to the suppression of backscattering due to the spatial
separation of the edge channels carrying current in opposite directions.

For further introductory reading, we recommend reference [2]. For
a review on the importance of edge states and experimental aspects
see reference [49].

2.4 Resonant versus Sequential Tunneling

The aim of this section is to introduce to the concepts of resonant
and sequential tunneling. For this purpose, we use the example of
a one-dimensional double-barrier structure as sketched in figure 18.
In such a device, two different regimes exist, the regime of resonant
tunneling and the regime of sequential tunneling (for further reading,
we recommend reference [2]).

2.4.1 Resonant Tunneling

If we neglect the Coulomb interaction and assume that the transport
through a double-barrier structure like in figure 18 is fully phase-
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coherent, the conductance predicted by the Landauer formula is given
by

G =
2e2

h

∑

n,m

Tn,m(EF) , (68)

where Tn,m is the total transmission amplitude through the two bar-
riers. Assuming that the lateral confinement potential of the quan-
tum wire is independent of the barrier potential, the channels are not
mixed and from a straightforward effectively one-dimensional calcula-
tion based on the matching of wave-functions, one obtains

Tn,m(E) = δn,m
T1T2

1 +R1R2 − 2
√
R1R2 cos θ

(69)

with θ = 2k(E)L+θ0 where T1 (T2) and R1 (R2) are the transmission
and reflections probabilities, respectively, of the left (right) barrier.
L denotes the distance between the barriers, k(E) the longitudinal
component of the wave-vector corresponding to the energy E and θ0

is an offset angle depending on the phases of the reflection amplitudes
of the barriers.

Maxima in the transmission and therefore in the conductance oc-
cur at energies where cos θ = 1 or 2kL + θ0 = 2πn. This is the
quantization condition for bound states in a one-dimensional box of
length L. Thus, the spectral properties of confined electrons can be
probed by a transport experiment.

At these energies with cos θ = 1, the total transmission T > T1T2

in larger than the product of the transmission probabilities of the two
barriers. For a symmetric structure with T1 = T2, one obtains even
perfect transmission T = 1 at the energies of quasi-discrete states
between the barriers. This is called resonant tunneling and is based
on the phase coherence during the entire process and the existence
of scattering states through the whole structure. An optical analog
is the well-known Fabry-Perot interferometer. The line-form of these
resonances is Lorentzian with width γ = γ1 + γ2, where

γi

~
=

v

2L
Ti (70)

is the escape rate through the barrier i. Thus, the natural line-width
is given by the lifetime of the quasi-discrete states in the quantum dot.
The resonant tunneling peaks can be resolved only when the width γ
is smaller than their separation, the level spacing ∆. This requires
barriers of low transmission. For more details on resonant tunneling
see reference [2].
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2.4.2 Sequential Tunneling

When the tunnel barriers are high and/or thick, the transmission prob-
abilities and the escape rates (70) become very small. Then, the typ-
ical time an electron spends in the quantum dot

τD =
~

γ
=

2L

v

1

T1 + T2
(71)

can become very long. However, the phenomenon of resonant tunnel-
ing is based on the phase coherence of the entire process and therefore
restricted to the regime

τD � τφ . (72)

In the opposite regime, when

τD � τφ , (73)

the phase coherence is broken while the electron is inside the quantum
dot. This regime is called the regime of sequential tunneling since the
events can be ordered in time:

1. An electron tunnels from the left lead to the dot

2. The phase coherence is broken

3. An electron tunnels from the dot to the right lead

In this case, no coherent scattering states extended from the left
lead throughout the dot region until the right lead exist. Nevertheless,
it should still be possible to detect the quasi-discrete levels inside the
dot if the time scales mentioned above are much longer

τD � τφ � τH =
~

∆
(74)

than the Heisenberg time τH related to the level spacing in the dot.
In this situation, a Pauli master equation for the occupation prob-

abilities fr of the quasi-discrete levels r at energies εr can be justified
[50]. Still neglecting the Coulomb interaction between the electrons,
one writes the current between the left reservoir (with chemical po-
tential µ1) and the level r of the dot as

I1→r =
2e

~
γ1 (f1(εr)(1 − fr) − fr(1 − f1(εr))) =

2e

~
γ1 (f1(εr) − fr) .

(75)
In the same way, one expresses the current between the right lead (at
chemical potential µ2) and the level r as

I2→r =
2e

~
γ2 (f2(εr) − fr) (76)
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and uses the current conservation in the static solution (∂fr/∂t) to
require

I1→r + I2→r = 0 . (77)

This allows to determine the occupation probability

fr =
γ1f1(εr) + γ2f2(εr)

γ1 + γ2
(78)

of the level r. The current flowing from the left to the right reservoir
through the quantum dot is equal to the current from one of the
reservoirs to the dot

I1→r→2 = I1→r = −I2→r . (79)

Plugging the occupation probability (78) into the expression (75) for
the current, and summing over all levels r, one obtains the total cur-
rent through the quantum dot

I1→r→2 =
∑

r

2e

~

γ1γ2

γ1 + γ2
(f1(εr) − f2(εr)) . (80)

This gives maxima of the current at the same energies as the scheme
of resonant tunneling. However, the line-form of the peaks is now
determined by the thermal broadening of the step in the Fermi-Dirac
distributions f1/2 which describe the occupation of the electronic levels
in the reservoirs.
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3 Effects of the Electron-Electron In-

teraction

While a variety of phenomena can be understood within a (weakly in-
teracting) quasi-particle approach, the always present strong Coulomb
interaction between electrons can have a dramatic influence on
the transport properties when the electrons are confined in low-
dimensional systems. A prominent example is the Coulomb block-
ade effect and the resulting conductance oscillations in the transport
through quantum dots [51]. The reduced dimensions are expected to
render electronic correlations more important than in the bulk. Go-
ing to lower dimensions and/or very dilute limits results in a poorer
screening of the electron-electron interaction, enhancing the role of
Coulomb repulsions.

3.1 The Coulomb Blockade

Let us start with the example of a small tunnel junction, a poten-
tial barrier in a quantum wire between two well-conducting regions.
According to the Landauer formula (60), the current should grow lin-
early with the applied voltage. However, in tunnel junctions with a
very small cross section, measured in series with a large resistance, a
suppression of the linear conductance and the appearance of a volt-
age offset in the current–voltage characteristics is observed [52] (see
figure 19). In this experiment, an Al/AlxOy/Al junction with an
area A < 0.01µm2 and an effective oxide layer thickness of about
d/εr = 0.15nm was investigated at low temperature T = 1K.

Considering that the junction also acts as a capacitor, such a small
area of the junction corresponds to an extremely low capacity. Using
the formula for a parallel-plate capacitor, one gets

C = ε0εr
A

d
≈ 0.5fF = 5 × 10−16F . (81)

The energy corresponding to the charging of a capacitor having such
a small capacitance with one single electron

EC =
e2

2C
(82)

is then approximately 300µeV. This corresponds to kBT for a temper-
ature of about 30K and thus represents an important energy scale in
the problem. The charging energy is a consequence of the Coulomb
interaction between the electrons and influences the transport prop-
erties of the tunnel junction in the following way.
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Figure 19: The current-voltage characteristics of samples containing low-
capacitance tunnel junctions in series with more tunnel junctions providing
a highly resistive environment. The offset voltage and the suppression of
the linear conductance characteristic of the Coulomb blockade are clearly
observed (from [52]).

Even though the charge

Q = CV (83)

induced by the voltage V on the capacitor does not need to be an in-
teger multiple of the elementary charge e, the tunneling of an electron
through the barrier changes this charge by exactly one elementary
charge. Immediately after the tunneling event, the charge on the ca-
pacitor is

Q′ = Q− e . (84)

The electronic transport is based on tunneling through the barrier and
since tunneling conserves energy, these processes are suppressed when
the energy needed to change the charge on the capacitor exceeds the
available energy. Denoting the one-particle energy of the electron ε1
and ε2 before and after the tunneling, respectively, energy conservation
requires

ε1 +
Q2

2C
= ε2 +

(Q− e)2

2C
. (85)

Replacing Q by the voltage according to equation (83) and writing
the voltage V in terms of the chemical potential difference µ1 − µ2,
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one gets

ε1 − ε2 + µ1 − µ2 =
e2

2C
= EC . (86)

Since at low temperature the energy of the electron before tunneling
is below the chemical potential ε1 ≤ µ1 and the energy after tunneling
is above the other chemical potential ε2 ≥ µ2, one has always ε1−ε2 ≤
µ1 − µ2 and obtains from (86) the condition for tunneling

2eV = 2(µ1 − µ2) ≥ EC . (87)

This is the origin of the suppression of the linear conductance through
ultra-small capacitances and explains the voltage offset

Vof =
EC

2e
(88)

in the current-voltage characteristic of figure 19. This suppression
of the conductance is a consequence of the granular structure of elec-
tronic charge combined with electron–electron interactions. It is called
the Coulomb blockade effect and can lead to single electron tunnel-
ing as proposed in references [53, 50] (for introductions, see references
[54, 55]). For a recent review, see chapter 3 of reference [3].

In order to be able to observe the Coulomb blockade effect, two
main conditions must be fulfilled:

• Thermal fluctuations should be small enough in order not to
provide the charging energy. This requires

EC � kBT , (89)

a condition which can be fulfilled in ultra-small capacitance junc-
tions at low temperatures.

• Quantum fluctuations should be smaller than the charging en-
ergy. For a systematic treatment of this limitation, see [56].
According to a rough estimate, the energy uncertainty is due to
the time τ it takes to restore the initial equilibrium charge Q
on the capacitor. If this time is short, the energy uncertainty
smears out the charging energy. Thus,

EC � ∆E = ~/τ (90)

must be fulfilled. If one estimates the time scale from the expo-
nential decay of the capacitor charge in a classical RC circuit,
τ ≈ RC, this results in the requirement to have a resistance of

R� 1

π

h

e2
(91)
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in series. This is realized for small metal grains connected via
tunnel barriers to the reservoirs and lead to the first observation
of single electron charging and the Coulomb blockade effect [57].
In a controlled fabrication of artificial structures, using several
small-area tunnel junctions, the single electron charging effects
were first obtained in reference [58]. The Coulomb blockade be-
comes more pronounced when more tunnel junctions are put in
series [52].

3.2 Transport through Quantum Dots

Since the conditions for observing the effects of single electron tun-
neling require a large resistance in series with the small-capacitance
tunnel junction, it is most promising to study two tunnel junctions in
series, separated by a very short distance (see the sketch in figure 18).
In the region between the barriers, the electrons are confined and a
quantum dot is formed which is only weakly connected to the exterior
world by tunnel barriers.

The conductance through a quantum dot in the regime of sequen-
tial tunneling was dealt with in section 2.4.2, neglecting electron–
electron interactions. Real electrons however do interact, and the
addition of an electron to the quantum dot costs not only the one-
particle energy εr, but also the electrostatic charging energy given by
the repulsion of the electrons which are already there. This interaction
dominates over the one-particle energy in the case of small dots and
low electron density and strongly influences the transport properties
of the quantum dots.

Including the charging energy as a constant EC into the master
equation description is called the orthodox theory of single electron
tunneling in the literature [50, 59, 3].

The single-particle picture used above breaks down when electronic
correlations in the quantum dot become important. This somewhat
complicates the orthodox theory, but it is nevertheless possible to
generalize it. One now has to deal with many-body states in the
quantum dot and considers the occupation probabilities of these many-
body levels [59]. The main difference is that the single particle energy
levels εr are replaced by the energy

µD(N) = EN+1 −EN (92)

needed to add an electron to the dot containing N electrons. Here EN

stands for the many-body energy of N confined interacting electrons
inside the quantum dot. Conductance peaks are expected when the
Fermi energy is equal to the µD(N) which corresponds to the energy
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dot1 2

gate

Figure 20: Sketch of a single electron transistor. Applying a voltage to the
additional gate allows to control the electrostatic potential of the quantum
dot. Note that the leads are connected to the dot through tunnel barriers
while the gate is isolated and coupled only capacitively to the dot region.

difference between the many-body ground states in the dot. Then,
single charge tunneling and the Coulomb blockade occur as discussed
in section 3.1.

3.3 The Single Electron Transistor

The single electron transistor consists of a small quantum dot, con-
nected weakly to leads, very much like the double barrier structure
sketched in figure 18. The important additional feature is a side or
back gate (see the sketch in figure 20) which allows to tune the elec-
trostatic potential in the quantum dot. Such a setup can be formed in
disordered quantum wires with a lateral gate where the dot appears
between two accidentally close impurities [61]. A more controlled way
to produce a single electron transistor is to use artificially fabricated
semiconductor [60] or metallic [55] nanostructures where the size of
the dot can be controlled. One of the main features of the behav-
ior of such a single electron transistor is the appearance of conduc-
tance oscillations as a function of the gate voltage [60] (see figure
(22). Qualitatively, this is expected from the discussion of resonant
and sequential tunneling in double-barrier structures since the gate
voltage allows to modify the one-particle energies in the quantum dot.
As compared to the non-interacting theory, however, important dif-
ferences appear. The spacing of the conductance peaks is larger than
expected from the non-interacting theory, especially for small quan-
tum dots. In addition, the conductance oscillations are very regular.
This is due to the charging energy which dominates the energy nec-
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Figure 21: A single electron transistor device using the two-dimensional elec-
tron gas formed in a semiconductor heterostructure, here GaAs/GaAlAs.
Negative voltage is applied to the metallic top gates, depleting the two-
dimensional electron gas underneath. The fingers in these top gates lead to
tunnel barriers in the effective potential landscape for the electrons. The
overall electrostatic potential can be influenced via a back gate voltage Vg,
applied to the substrate of the sample. Right: Top view of the device (from
[60]).

essary to add an electron to the dot. The more irregular one-particle
spectrum is of minor importance for this energy.

For an introduction to single electron transistors, we recommend
reference [62]. For a discussion of the theoretical description of the
behavior of the single electron transistor in the regime of sequential
tunneling see reference [63].

3.3.1 Transport Spectroscopy

The nonlinear transport properties of quantum dots can be used to
measure the addition spectrum of the confined electrons [64, 65, 66].
That the electronic correlations induced by the Coulomb interactions
between the electrons in a quantum dot can have drastic consequences
on its transport properties is illustrated by the spin blockade effect
[67, 68, 69, 63] where the spin selection rules affecting the tunneling
matrix elements together with the electronic correlations can lead to
spectacular consequences like negative differential resistances and the
suppression of conductance peaks.

42



Figure 22: The back gate voltage dependence of the conductance of single
electron tunneling transistor devices at low temperature T = 50mK. (a)
and (b) are for samples with the same barrier separation, (c) and (d) are
for progressively lower barrier distance and exhibit correspondingly larger
periodicity of the oscillations (from [60]).

The nonlinear transport properties can then be used to investigate
the properties of few interacting electrons, confined in a quantum dot.
Quantum dots are sometimes called artificial atoms and the transport
experiments [66, 70, 71] in the linear and non-linear regime as well as
under the influence of electromagnetic radiation [72] allow to study
their properties systematically. This permits to study confined corre-
lated many-body quantum systems and represents an important tool
for fundamental research in quantum physics [73]. As an example,
electronic correlation effects like the Kondo effect can be studied in
the transport properties of very small single electron transistor devices
[74, 75].

Making structures with two [76], three [77] and more coupled quan-
tum dots, even artificial molecules can be investigated experimentally.
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3.3.2 Applications

Since the conductance of a single electron transistor depends strongly
on the gate voltage, it can in fact be used as a transistor. But in
addition to the usual functionality of a transistor, the conductance of
a single electron transistor exhibits oscillations as a function of the
gate voltage which might be used in electrical circuits. Since a single
electron transistor it is extremely sensitive, it might be used to amplify
quantum signals [78], like the ones obtained in the read-out of a future
quantum computer.

Since the conductance of a single electron transistor can vary by
several orders of magnitude with a small change of the gate voltage,
such a setup is also an extremely sensitive electrometer, capable of
measuring fractions of an electronic charge [79].

Most important, the Coulomb blockade allows to manipulate single
electrons in a controlled way, devices containing tunable tunnel junc-
tions and quantum dots can be used to count electrons or to create
well defined currents

I = nef (93)

when f is the frequency of the applied ac control voltages and n is
the number of electrons transferred per cycle [80, 81]. This has impor-
tant metrological applications and might lead to a current standard in
the close future. Metrologically important accuracy has already been
achieved when a counted number of electrons was used to charge a
capacitor [82], paving the road towards a novel capacitance standard.

Making the quantum dot structure extremely small (∼ 5nm), sin-
gle electron tunneling can be observed even at room temperature.
Without the need of extremely low temperatures as in the first ex-
periments, single electron tunneling becomes interesting for different
purposes. However, it remains difficult to fabricate quantum dots of
so small size and their contacts to the leads in a controlled way.

4 Summary

In this series of lectures, an introduction of the physics of mesoscopic
systems was given. In the mesoscopic regime, many interesting and
sometimes unexpected effects appear due to the phase coherence of
the electronic wave-functions. Some of these effects are very promising
for applications in nano-electronic devices or for quantum standards
in metrology. The most prominent example, the integer quantum Hall
effect, is already used as a resistance standard.

On the other hand, mesoscopic systems provide the possibility to
study basic features of quantum mechanics in a controlled way. They
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also allow to study directly features of interacting correlated quantum
many-body systems. Examples are the fractional quantum Hall effect
and the transport spectroscopy of interacting electrons in quantum
dots.

In material science, the main subject of the present school, the
tendency to produce and investigate materials containing smaller and
smaller structures, and having low-dimensional features, leads towards
the mesoscopic regime. Therefore, mesoscopic effects are expected to
become more and more important in this field of research.
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Spin blockades in linear and nonlinear transport through quan-
tum dots. Phys. Rev. Lett., 74(6):984–987, February 1995.

[69] Kristian Jauregui, Wolfgang Häusler, Dietmar Weinmann, and
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