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2 Basic Classical Concepts

2.1 Eigenstates, Dispersion

Most mesoscopic phenomena can be understood using the free-electron
approximation of independent electrons. One assumes parabolic bands
with an effective electron (hole) mass m. Hence, bandstructure effects are
taken into account only via the effective mass, which we assume to be a
scalar. Notable examples, for which the picture of independent electrons
(quasi-particles) is not correct, are the fractional quantum Hall-effect and
superconductivity. Model systems that are often used for basic mesoscopic
experiments are either semiconductors (systems with very few defects) and
simple metals like Au, Ag, Cu. In the former, very high electron mobilities
can be realized.

As a reminder to solid-sate physics, the following figures show some band
structures for important model systems. Although all electric phenomena
will be treated using a single parabolic-band in 3-dimensions (3d) in the
following, it is important to emphasize, that this is just an (the simplest)
approximation. For example, a single isotropic band does not result in a
magnetoresistance (change in resistance if a magnetic field B is applied),
a phenomenon experimentally well established. Similarly, a single electron
band cannot explain the ‘wrong’ sign in the Hall resistance which is often
observed, even for very good metals, e.g. Aluminium.

Finally, we note, that an electron state in a crystal is described by a Bloch
wave characterized by the band index n and a wavevector ~k. An electron
that occupies such a state has a (group-) velocity given by:

~v =
1

h̄

∂En(~k)

∂~k

Hence, in a crystal (in zero magnetic field) the relevant quantum numbers
are: n (bandindex), ~k (wavevector or wavenumber), q = −e (charge, e > 0),
and mz = ±1/2 (spin). The discrete set of independent wavevectors define
the 1st Brillouin zone in reciprocical space.
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Fig 2.1 Fermi surface of Cu. This surface is nearly spherical, so that the free-electron

approximation is quite good here.

Fig 2.2 Bandstructure of cooper.
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Fig 2.3 Bandstructure of Nickel (top) and the density-of-states (bottom). Compare

with Cu.

2 BASIC CLASSICAL CONCEPTS 2.4

Fig. 2.4 Bandstructure of silicon (top) and the density-of-states (bottom).
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Fig. 2.5 Bandstructure of Ge. Note, the valence-band maximum is located at the Γ-

point, while there are several minima in the conduction band located at the Brillouin-zone

boundary.

Fig. 2.6 Fermi surface for conduction electrons for Si (left) and Ge (right).
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Fig. 2.7 Bandstructure for GaAs (right), which is a direct band-gap material as com-

pared to Ge and Si that are indirect.



2 BASIC CLASSICAL CONCEPTS 2.7

The wavefunction for electrons in a confining potential U(~x) is an eigen-
function of the Schrödinger equation:

{
1

2m
(~p − q ~A)2 + U(~x)

}
Ψ(~x) = EΨ(~x)

Here, ~p = h̄
i
~∇ is the momentum operator, q = −e the charge of an electron,

and ~A the vector-potential, i.e. ~∇∧ ~A = ~B. In the following, we will have
a look to a few simple cases for zero magnetic field.

Case A), no confinement:

Hence, U(~x) = 0 and

Ψ(~x) = ei~k·~x and E(~k) =
(h̄k)2

2m

The plane-wave solution can be regarded an approximation for real Bloch
electrons of a crystal, for which

Ψ~k(~x) = u~k(~x)ei~k·~x

It is important to note that the (quasi-) plane-wave solution is a conse-
quence of translation invariance in all three directions.

Case B), confinement in one dimension (2d case):

For a confining potential U(~x) = U(z) translation invariance in the z-
direction is broken.
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For this reason, free propagation in z-direction is no longer possible and
only two components of the wavevector remain, i.e. the components in the
x-y-plane. The wavefunction is given by:

Ψn,~k‖
= φn(z)ei(~k‖·~x‖) , ~k‖ = kx~ex + ky~ey,

and φ(z) has to obey the equation:



1

2m

(
h̄

i
∂z

)2

+ U(z)


 φn(z) = εnφn(z)

Ther different eigenfunctions are distinguished by the index n. The total
energy is now:

En(~k) = εn +
(h̄~k‖)2

2m

This dispersion relation is shown in Fig. 2.9. If the Fermi energy EF is
larger than εj, it is said that j two-dimensional subbands are occupied.
The energy εn is the cut-off energy for the subband n. Note, that a system
is truly two-dimensional only if ε1 < EF < ε2.

Fig. 2.9 Dispersion for 2d-subbands. A system is truly 2-dimensional if the lowest

subband is the only one occupied, i.e. ε1 < EF < ε2.

For electrons in an n-type semiconductor, the zero of energy in Fig. 2.9
corresponds to Ec, the minimum of the conduction band.
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Case C), confinement in two dimension (1d case):

In addition to the z-direction, electrons are now also confined within e.g.
the y-direction. Then,

En(k) = εn +
(h̄k)2

2m
, where k = kx

Here, one refers to the energy bands as one-dimensional subbands. Since
translation invariance is not broken along the x-axis, the solutions of the
Schrödinger equation correspond to plane waves that match the bound-
ary condition. This is analogous to an optical waveguide, so that we can
speak of an electron waveguide here, though often the term quantum wire
is prefered.

Fig. 2.10 Schetch of a 1d-waveguide for electrons and the corresponding dispersion

relation.

Case D), confinement in all three dimension (0d case):

Now an artificial atom has been generated. There are no propagating states
anymore. Such systems are often refered to as quantum dots.

One may wonder, why not any real crystal is a quantum dot, since it is finite
in size. As a Gedankenexperiment take a piece of metal 1µm in size. Then,
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the average energy-level spacing is of order ∆E ≈ EF/N ≈ 5 peV. N ≈
1012 is the number of atoms and EF ∼ 5 eV the Fermi energy. Since the
level-spacing corresponds to a temperature of ≈ 60 nK, which is far lower
than everything accessible in a real experiment, the states are sufficiently
broadened and overlap. Hence, a continuous energy-band is formed. From
this we learn, that one may talk of a quantum dot only if the condition
∆E << kT is met.

2.2 Density of States

Assume a crystal in 3-d of size L × L × L. Periodic boundary conditions
restrict allowed wavevectors to:

kj = nj
2π

L
; j = 1, 2, 3 ; nj ∈ Z

Therefore, there is one state (not counting the spin degeneracy) per k-state
volume of (2π)d/V , so that the density of states is given by:

ρ = D(k, x) =
1

(2π)d
, (k, x) := (~k, ~x)

Note, this state-density is per unit volume in k- and x-space. Hence, the
total number of states is given by

Z =
∫
V

ddx
∫
1.BZ

ddk D(k, x)

Most often we are interested in the density-of-states per unit energy.

Case A), Three Dimensions

The total number of states Z(E) with energies ≤ E is (now including a
factor 2 for spin degeneracy):

Z(E) = 2
∑

{~kj |E(~kj)<=E}
1 = 2

V

(2π)3

∫
E(~k)≤E

d3k

Defining z(E) := Z(E)/V and D(E, x) := ∂z(E)/∂E, one obtains:
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D3d(E, x) =
2

(2π)2

(
2m

h̄2

)3/2 √
E (2.1)

Case B), Two Dimensions

For one 2-d subband with energy cutoff εn:

zn(E) =
2

(2π)2π




(E − εn)2m

h̄2


 , E ≥ εn

It follows that the density-of-state D(E) is constant and for each 2-d sub-
band equal:

D2d(E, x) =
m

πh̄2

∞∑
n=1

Θ(E − εn) (2.2)

Fig. 2.11 Density-of-states per unit energy for a set of 2-d subbands
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Case C), One Dimension

For a 1-d subband with energy cutoff εn:

zn(E) =
2

2π
2

√√√√(E − εn)2m

h̄2 , E ≥ εn

Density-of-state D(E) := ∂zn(E)/∂E per volume and unit energy:

D1d(E, x) =
1

π

√√√√2m

h̄2

∞∑
n=1

Θ(E − εn)√
E − εn

(2.3)

Fig. 2.12 Density-of-states per unit energy for a set of 1-d subbands

General Case applicable to any energy surface

z(E) =
2

V

∑
{k|E(~k)<=E}

1 =
2

(2π)d

∫
E(~k)<=E

ddk

z(E) =
2

(2π)d

∫ Ẽ

0
dẼ

∫
E(~k)=Ẽ

dd−1S(~k)
1

|∂E(~k)/∂~k|
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D(E, x) =
2

(2π)d

∫
E(~k)=E

dd−1S(~k)
1

|∂E(~k)/∂~k| (2.4)

The electron density-of-states can be probed with the very elegant method
of capacitance spectroscopy. The basic principle is explained with reference
to Fig. 2.13.

Fig. 2.13 Schematics for electron states of two identical metal electrodes separated

by an insulator of thickness d to form a capacitor. The voltage drops partially over the

insulator, but in part also at the surface of the electrodes.

Having applied the voltage V , the electrode to the left is charged negatively
and the one to right positively. Focusing on the left electrode, we see that
the number of electrons is increased near the surface by δns (the index
s refers to a density per surface area). As a consequence, a fraction of
the voltage drops near the surface of the electrode (within the screening
length). Hence, δns = Ds(EF )eVs, where Ds(EF ) is the state density per
surface area (integrated over the screening length). The surface-charge
density σ is now given by

σ = e2Ds(EF )Vs
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Using E = σ/ε0 for the electric field one obtains for the total voltage drop:

V = σ




d

ε0
+

2

e2Ds(EF )




The part within the brackets is the inverse of the total capacitance per
unit area. There are three contributions: a geometrical capacitance
Cgeom = ε0/d and two (equal) electrode capacitances Cs = e2Ds(EF ) for
each electrode. In good metals like gold, the electrode surface-capacitance
is large of order 1Fm−2. Therefore, the total capacitance is in most sit-
uations very well approximated by the geometrical capacitance. In semi-
conductors, on the contrary, the capacitance intrinsic to the depletion or
population of e.g. the conduction band may even dominate the total ca-
pacitance.

Fig. 2.14 One measures the capacitance between the top gate and a conducting back

electrode, which in this GaAs-based heterostructure is n+ doped. The dashed line indicate

the 2DEG. This 2-dimensional electron gas is so close to the bottom layer that electron

transfer (by tunneling) is possible within a reasonable time scale. One can now adjust

the electron density in the 2DEG by applying the corresponding dc-voltage. Next, the

capacitance is measured dynamically by applying in addition a small ac-voltage.

A particular simple situation arises in measurements of a 2-dimensional
electron gas (2-DEG) sandwiched in between a top metal gate and a bottom
highly doped layer, see Fig. 2.14. Here, the capacitance is given by

C = e2D2(EF ) ,

with D2(EF ) being the 2d-density-of-states of the 2DEG.
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A measurement example is shown in Fig. 2.15 for arrays of one-dimensional
wires of different widths formed by a corrugated gate ontop of the 2DEG
(scheme d of Fig 1.9). The visible oscillations are due to a modulation of
the density-of-states.

VG

Fig. 2.15 The derivate of the capacitance recorded as a function of the gate voltage

on 1d-electron channels with different widths in an GaAs-AlxGa1−xAs heterojunction

with corrugated gates. The line widths denoted are the lithographic widths defining the

channels.

The following figures highlight recent developments (by R. Ashoori 1993)
allowing to analyze the energy-level spectrum in quntum-dot structures.
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Fig. 2.16 (a) Conduction band profile of the multilayer sample. EF is the Fermi level in

the n+ doped bottom layer and V0 is the voltage applied to the gate. (b) Schematic cross-

section through the tunnel capacitor. (c) SEM image of the tunnel capacitor showing the

top gate.
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Fig. 2.17 Measured signal proportional to the capacitance for a voltage sweep starting

at negative voltages. Each visible peak corresponds to the opening of a new quantum-dot

state at which instant the dot is populated. The first peak occurs at −620mV and there

exist no such feature at lower voltages. This technique allows to study single elctron states

in a quantum dot.

Fig. 2.18 Gray scale images of the capacitance of one sample (thermally cycled in

between) as a function of energy and magnetic field.
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2.3 Thermodynamics

Since electrons are fermions, the state occupancy in thermodynamical equi-
librium is determined by the Fermi-Dirac distribution function f0. This
function depends on temperature and on the energy E of the respective
state:

f0(E) =
1

e(E−µ)/kT + 1
(2.5)

Herein, µ = µ(T ) is the chemical potential. Some authors exclusively use
the assignment µ(T → 0) ≡ EF for the Fermi-energy EF , while for others
µ = EF for any temperatures. The latter definition is widely used in the
semiconductor literature.

The Fermi-energy (or chemical potential) has to be determined selfconsis-
tently via the following equation that determines the electron density:

n =
∫ ∞
0

D(E)f0(E)dE

We sometimes will use the abreviation f0(ε) for

f0(ε) =
1

1 + exp(ε)
with ε := (E − µ)/kT

There are the following useful relation for the Fermi-Dirac function, see
also Fig. 2.19:

f0(E)(1 − f0(E)) = −kT

(
∂f0

∂E

)
(2.6)

∂f0(E)

∂E
= − 1

4kT

(
cosh

(
E − µ

2kT

))−2

(2.7)

limT→0


∂f0(E)

∂E


 = −δ(E − µ) (2.8)
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Fig. 2.19 The Fermi-Dirac distribution function.

While the equilibrium distribution does depend on energy only, in situa-
tions where transport takes place the non-equilibrium distribution function
f differs from f0:

f = f(~k, ~x, t)

In general, one would also have to include the spin in order to describe a
non-equilibrium spin distribution (in e.g. a magnet). In many situation a
local equilibrium is formed. The stationary distribution function is then of
the form:

f(~k, ~x) = f0(E(~k)) with µ := µ(~x), T := T (~x)

How to caclulate a current ?

The current density is ~j = charge-density × velocity. In a volume of size
L3 each electron in an extended state contributes the charge density by
q/L3. Since the velocity ~v equals 1

h̄∂E/∂~k, which amounts to h̄~k/m for
‘free’ electrons, we obtain for zero temperature:

~j = −2e

L3

∑
occupied

h̄~k/m = − 2e

(2π)3

∫
E(~k)≤EF

d3k (h̄~k)/m

This is obviously zero in equilibrium, since E(−~k) = E(~k). Using the
distribution function we now write:

~j = − 2e

(2π)3

∫
d3k f(~k, ~x)(h̄~k)/m

2 BASIC CLASSICAL CONCEPTS 2.20

If f(−~k, ~x) = f(~k, ~x), then ~j = 0, which is obviously the case in equilib-
rium.

2.4 Classical Transport

The electron gas is viewed as a classical fluid and described by a simple
Newton-like equation for the mean particle momentum 〈~p〉. Scattering
among the particles allows the exchange of momentum and is taken into
account by a friction term proportional to 〈~p〉. In an electric field ~E we
have:

{
d

dt
+

1

τm

}
〈~p〉 = q~E (2.9)

The parameter τm is called the momentum relaxation time, since it deter-
mines the time scale with which the (non-equilibrium) momentum relaxes
after turning off the external force. Since in equilibrium 〈~p〉0 = 0, the
relaxation follows the law ∝ exp(−t/τm).

The stationary solution of 2.9 is given by 〈~p〉 = qτm
~E . The mean velocity,

which is called the drift velocity ~vD follows by divinding through m. Since
the current density is given by

~j = qn~vD = σD
~E

the so called Drude-conductivity σD is obtained:

σD =
e2n

m
τm (n = density of electrons) (2.10)



2 BASIC CLASSICAL CONCEPTS 2.21

It appears from this equation that σ is determined by all electrons (since
the total density of electrons enter). We will show below, however, that
σ is soley determined by properties of the electrons at (or close to) the
Fermi energy in degenerate electron gases. It is said that σ is a Fermi-level
property.
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2.5 Boltzmann Equation

This Boltzmann equation is widely used in classical statistical mechanics.
It can equally well applied to quantum particles (here fermions) provided
that scattering among the particles is rare. More precisely: the mean-free
path must be much larger than the particle’s wavelength. The equation
describes the evolution of the distribution function f(~k, ~x, t) under the
action of external and internal (scattering) forces. If there is no scattering
between the quasi-particles, Liouville’s theorem states that the total phase-
space volume remains constant. Hence, the total time-derivative of f is
zero. Scattering is taken into account by adding an additional term, the
collision term:

(
df

dt

)
=

(
∂f

∂t

)
collision

(2.11)

The total derivative of f versus time is:

df

dt
=

∂f

∂t
+ ~v · ∂f

∂~x
+


d~k

dt


 · ∂f

∂~k

Since 1
h̄(h̄~̇k) = q~E/h̄ (only valid for weak fields), we obtain:

∂f

∂t
+ ~v · ∂f

∂~x
+

q

h̄
~E ·

~∂f

∂k
=

(
∂f

∂t

)
collision

(2.12)

A formal description of the scattering term (∂f(~k)/∂t)coll can easily be
written down by noting that it must contain two parts: a positive one for
the electrons that scatter from a different state ~q into state ~k with a rate
given by wk,q and a negative one originating from the possibility that state
~k may disappear by scattering into all the other states:
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∂f(~k)

∂t




coll

=
∑

~q (6=~k)

{
[1 − f(~k)]wk,qf(~q) − [1 − f(~q)]wq,kf(~k)

}

In degenerate systems, for which eV ¿ EF , the occupation factors f and
1 − f ensure that only states in the vicinity of the Fermi surface can
contribute to the collision term. Hence, the momentum-relaxation time
τm is a Fermi-level property.

We consider (quasi-) elastic scattering in the following, so that E(~k) ≈
E(~q), and assume time-reversal invariance ( ~B = 0). Then, in addition,
wk,q = wq,k and the collision term simplifies to:


∂f(~k)

∂t




coll

=
∑
~q

wq,k[f(~q) − f(~k)] (2.13)

Because of elastic scattering wq,k ∝ δ(E(~k)−E(~q)). We consider the most
simple model and assume that scattering is isotropic (not angle dependent).
wq,k is then a constant:

wq,k ' C

τ(E)
δ(E(~k) − E(~q))

Here, the time constant τ may depend on energy and C is a normalization
constant:

C =
1

V D(E)
(V = volume)

Inserting into eq. 2.13 one obtains a rather simple expression for the colli-
sion term:


∂f(~k)

∂t




collision

= − f(~k)

τ(E)
+

〈f〉{~q|E(~q)=E(~k)}
τ(E)

(2.14)
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The second part, which describes the rate with which electrons scatter into
the state ~k, turns out to be an average of f(~k) over a surface of constant
energy in k-space:

〈f〉 =
2

D(E)(2π)3

∫
E(~q)=E

dS(~q)
1

|~∇E(~q)|f(~q)

For the equilibrium distribution f0, which depends on energy only, we have
〈f0〉 = f0 and the collision term in equilibrium is zero again as it should.

In a further simplification, the averaged term 〈f〉 is replaced by f0. This is
called the relaxation approximation which is in fact not purely elastic but
describes energy relaxation as well!

Before studying an example, the difference between momentum relaxation
and energy relaxation (as described by the relaxation approximation) will
be highlighted with a simple example. Let us look at a one-dimensional
Fermi gas at T = 0. The equilibrium distribution f0(k) is one for −kF <

k < kF and zero otherwise. Now we add one additional electron at state
k > kF . This represents an non-equilibrium case. From equ. 2.14 we find:
d/dt(f(k)+f(−k)) = 0. Hence, energy is conserved! However, momentum
is not conserved, as the added electron is going to oscillate between state
k and −k, with a zero time-averaged momentum. Equ. 2.14 therefore
describes momentum relaxation.

As a more realistic example for the Boltzmann-equation, using the collision
term eq. 2.14, we will investigate a one-dimensional wire of width w formed
in a 2DEG and consider only electrons with velocity v = vF . Boundary
scattering is assumed to be specular only, see Fig. 2.20

The velocity of each particle is given by ~v = vF (cos(α), sin(α)). Instead
of the parameter ~v or ~k we may use the angle α as a parameter for the
distribution function. We write: F (~x, α) := f(~x,~k). A magnetic field is
applied perpendicular to the plane of the wire in the z-direction: ~B = B~ez.

dF

dt
= ~v · ∂F

∂~x
+ ~̇v · ∂F

∂~v
=

(
∂F

∂t

)
coll
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Fig. 2.20 Wire formed in a 2-dimensional electron gas with specular boundary condi-

tions. The left trajectory is for zero magnetic field ~B = 0, while the right corresponds to

one with applied field. These trajoctories are shown for τ ≈ 0. Importantly however, we

make no assumption on the magnitude of τ in our model.

The part with the derivative of F with respect to ~v can be written differ-
ently:

1

m
q(~v ∧ ~B)

∂

∂~v
=

(
eB

m

)
∂

∂α
= ωc

∂

∂α

Here, ωc = eB/m is the cyclotron frequency. We now obtain for the
Boltzmann equation:

~v · ∂F

∂~r
+ ωc

∂

∂α
F = −F

τ
+

1

τ

∫ 2π

0
dα̃F (~r, α̃)/2π (2.15)

The boundary condition for specular refelction reads:

F (~r, α) = F (~r,−α) for y = ±W/2

A solution of the Boltzmann-equation eq. 2.15 that obeys the boundary
conditions is:

F (~r, α) = −c(x − ωcτy) + c l cos(α) with c = const, l = vF τ

This solution shows a constant density gradient along the x-axis (wire
direction) and it is the goal to calculate the diffusion coefficient from this
distribution. The particle density n(x, y) is given by

n(x, y) =
∫ π

−π
F (~r, α)dα = −c2π(x + ωcτy) ,
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so that ∂n/∂x = −2πc.

The diffusion current in the direction x follows from

IDiff =
∫ W/2

−W/2
dy

∫ π

−π
dαF (~r, α)vF cos(α)

= πcWvF l = jW (j =particle-current density)

Hence, we have j = πcvF l = −D∂n/∂x = 2πcD, where D is the diffusion
coefficient following to be:

Dxx = vF l/2 (2.16)

We will show later, that this diffusion coefficient is the ordinary re-
sult for classical diffusion in two dimensions. Importantly, there is
no dependence on the magnetic field, so that there is zero magnetoresis-
tance (the conductivity is related to D via the Einstein relation). However,
if boundary scattering is diffusive, there is in general a dependence of D

on B and magnetoresistance shows up.
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