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Preface

The present notes cover a series of three lectures on the quantum Hall effect given at
the Singapore session “Ultracold Gases and Quantum Information” at Les Houches
Summer School 2009. Almost 30 years after the discovery of the quantum Hall effect,
the research subject of quantum Hall physics has certainly acquired a certain degree of
maturity that is reflected by a certain number of excellent reviews and books, of which
we can cite only a few (Prange and Girvin, 1990; Yoshioka, 2002; Ezawa, 2000) for
possible further or complementary reading. Also the different sessions of Les Houches
Summer School have covered in several aspects quantum Hall physics, and S. M.
Girvin’s series of lectures in 1998 have certainly become a reference in the field.1

Girvin’s lecture notes were indeed extremely useful for me myself when I started to
study the quantum Hall effect at the beginning of my Master and PhD studies.

The present lecture notes are complementary to the existing literature in several
aspects. One should first mention its introductory character to the field, which is in
no way exhaustive. As a consequence, the presentation of one-particle physics and
a detailed discussion of the integer quantum Hall effect occupy the major part of
these lecture notes, whereas the – certainly more interesting – fractional quantum
Hall effect, with its relation to strongly-correlated electrons, its fractionally charged
quasi-particles and fractional statistics, is only briefly introduced.

Furthermore, we have tried to avoid as much as possible the formal aspects of the
fractional quantum Hall effect, which is discussed only in the framework of trial wave
functions à la Laughlin. We have thus omitted, e.g., a presentation of Chern-Simons
theories and related quantum-field theoretical approaches, such as the Hamiltonian
theory of the fractional quantum Hall effect (Murthy and Shankar, 2003), as much as
the relation between the quantum Hall effect and conformal field theories. Although
these theories are extremely fruitful and still promising for a deeper understanding of
quantum Hall physics, a detailed discussion of them would require more space than
these lecture notes with their introductory character can provide.

Another complementary aspect of the present lecture notes as compared to existing
textbooks consists of an introduction to Landau-level quantisation that treats in a par-
allel manner the usual non-relativistic electrons in semiconductor heterostructures and
relativistic electrons in graphene (two-dimensional graphite). Indeed, the 2005 discov-
ery of a quantum Hall effect in this amazing material (Novoselov, Geim, Morosov, Jiang, Katsnelson, Grigorieva, Dub
Zhang, Tan, Stormer and Kim, 2005) has given a novel and unexpected boost to re-
search in quantum Hall physics.

1S. M. Girvin, The Quantum Hall Effect: Novel Excitations and Broken Symmetries,
in A. Comptet, T. Jolicoeur, S. Ouvry and F. David (Eds.), Topological Aspects of

Low-Dimensional Systems – École d’Éte de Physique Théorique LXIX, Springer (1999);
http://arxiv.org/abs/cond-mat/9907002

http://arxiv.org/abs/cond-mat/9907002
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As compared to the (oral) lectures, the present notes contain slightly more infor-
mation. An example is Laughlin’s plasma analogy, which is described in Sec. 4.2.5,
although it was not discussed in the oral lectures. Furthermore, I have decided to add
a chapter on multi-component quantum Hall systems, which, for completeness, needed
to be at least briefly discussed.

Before the Singapore session of Les Houches Summer School, this series of lec-
tures had been presented in a similar format at the (French) Summer School of the
Research Grouping “Physique Mésoscopique” at the Institute of Scientific Research,
Cargèse, Corsica, in 2008. Furthermore, a longer series of lectures on the quantum Hall
effect was prepared in collaboration with my colleague and former PhD advisor Pascal
Lederer (Orsay, 2006). Its aim was somewhat different, with an introduction to the
Hamiltonian theories of the fractional quantum Hall effect and correlation effects in
multi-component systems. As already mentioned above, the latter aspect is only briefly
introduced within the present lecture notes and a discussion of Hamiltonian theories is
completely absent. The Orsay series of lectures was repeated by Pascal Lederer at the
Ecole Polytechnique Fédérale in Lausanne Switzerland, in 2006, and at the University
of Recife, Brazil, in 2007. The finalisation of these longer and more detailed lecture
notes (in French) is currently in progress. The graphene-related aspects of the quan-
tum Hall effect have furthermore been presented in a series of lectures on graphene
(Orsay, 2008) prepared in collaboration with Jean-Noël Fuchs, whom I would like to
thank for a careful reading of the present notes.
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Introduction

Quantum Hall physics – the study of two-dimensional (2D) electrons in a strong per-
pendicular magnetic field [see Fig. 1.1(a)] – has become an extremely important re-
search subject during the last two and a half decades. The interest for quantum Hall
physics stems from its position at the borderline between low-dimensional quantum
systems and systems with strong electronic correlations, probably the major issues
of modern condensed-matter physics. From a theoretical point of view, the study of
quantum Hall systems required the elaboration of novel concepts some of which were
better known in quantum-field theories used in high-energy rather than in condensed-
matter physics, such e.g. charge fractionalisation, non-commutative geometries and
topological field theories.

The motivation of the present lecture notes is to provide in an accessible manner
the basic knowledge of quantum Hall physics and to enable thus interested graduate
students to pursue on her or his own further studies in this subject. We have therefore
tried, whereever we feel that a more detailed discussion of some aspects in this large
field of physics would go beyond the introductory character of these notes, to provide
references to detailed and pedagogical references or complementary textbooks.
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Fig. 1.1 (a) 2D electrons in a perpendicular magnetic field (quantum Hall system). In a

typical transport measurement, a current I is driven through the system via the contacts

C1 and C4. The longitudinal resistance may be measured between the contacts C5 and C6

(or alternatively between C2 and C3). The transverse (or Hall) resistance is measured, e.g.,

between the contacts C3 and C5. (b) Classical Hall resistance as a function of the magnetic

field.



2 Introduction

1.1 History of the (Quantum) Hall Effect

1.1.1 The physical system

Our main knowledge of quantum Hall systems, i.e. a system of 2D electrons in a per-
pendicular magnetic field, stems from electronic transport measurements, where one
drives a current I through the sample and where one measures both the longitudinal
and the transverse resistance (also called Hall resistance). The difference between these
two resistances is essential and may be defined topologically: consider a current that
is driven through the sample via two arbitrary contacts [C1 and C4 in Fig. 1.1(a)] and
draw (in your mind) a line between these two contacts. A longitudinal resistance is
a resistance measured between two (other) contacts that may be connected by a line
that does not cross the line connecting C1 and C4. In Fig. 1.1(a), we have chosen the
contacts C5 and C6 for a possible longitudinal resistance measurement. The transverse
resistance is measured between two contacts that are connected by an imaginary line
that necessarily crosses the line connecting C1 and C4 [e.g. C3 and C5 in Fig. 1.1(b)].

1.1.2 Classical Hall effect

Evidently, if there is a quantum Hall effect, it is most natural to expect that there
exists also a classical Hall effect. This is indeed the case, and its history goes back
to 1879 when Hall showed that the transverse resistance RH of a thin metallic plate
varies linearly with the strength B of the perpendicular magnetic field [Fig. 1.1(b)],

RH =
B

qnel
, (1.1)

where q is the carrier charge (q = −e for electrons in terms of the elementary charge
e that we define positive in the remainder of these lectures) and nel is the 2D carrier
density. Intuitively, one may understand the effect as due to the Lorentz force, which
bends the trajectory of a charged particle such that a density gradient is built up
between the two opposite sample sides that are separated by the contacts C1 and C4.
Notice that the classical Hall resistance is still used today to determine, in material
science, the carrier charge and density of a conducting material.

More quantitatively, the classical Hall effect may be understood within the Drude
model for diffusive transport in a metal. Within this model, one considers independent
charge carriers of momentum p described by the equation of motion

dp

dt
= −e

(

E +
p

mb
× B

)

− p

τ
,

where E and B are the electric and magnetic fields, respectively. Here, we consider
transport of negatively charged particles (i.e. electrons with q = −e) with band mass
mb. The last term takes into account relaxation processes due to the diffusion of elec-
trons by generic impurities, with a characteristic relaxation time τ . The macroscopic
transport characteristics, i.e. the resistivity or conductivity of the system, are obtained
from the static solution of the equation of motion, dp/dt = 0, and one finds for 2D
electrons with p = (px, py)
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eEx = −eB

mb
py − px

τ
,

eEy =
eB

mb
px − py

τ
,

where we have chosen the magnetic field in the z-direction. In the above expressions,
one notices the appearence of a characteristic frequency,

ωC =
eB

mb
, (1.2)

which is called cyclotron frequency because it characterises the cyclotron motion of a
charged particle in a magnetic field. With the help of the Drude conductivity,

σ0 =
nele

2τ

mb
, (1.3)

one may rewrite the above equations as

σ0Ex = −enel
px

mb
− enel

py

mb
(ωCτ),

σ0Ey = enel
px

mb
(ωCτ) − enel

py

mb
,

or, in terms of the current density

j = −enel
p

mb
, (1.4)

in matrix form as E = ρ j, with the resistivity tensor

ρ = σ−1 =
1

σ0

(

1 ωCτ
−ωCτ 1

)

=
1

σ0

(

1 µB
−µB 1

)

, (1.5)

where we have introduced, in the last step, the mobility

µ =
eτ

mb
. (1.6)

From the above expression, one may immediately read off the Hall resistivity (the
off-diagonal terms of the resistivity tensor ρ)

ρH =
ωCτ

σ0
=
eB

mb
τ × mb

nele2τ
=

B

enel
. (1.7)

Furthermore, the conductivity tensor is obtained from the resistivity (1.5), by matrix
inversion,

σ = ρ−1 =

(

σL −σH

σH σL

)

, (1.8)

with σL = σ0/(1 + ω2
Cτ

2) and σH = σ0ωCτ/(1 + ω2
Cτ

2). It is instructive to discuss,
based on these expressions, the theoretical limit of vanishing impurities, i.e. the limit
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ωCτ → ∞ of very long scattering times. In this case the resistivity and conductivity
tensors read

ρ =

(

0 B
enel

− B
enel

0

)

and σ =

(

0 − enel

B
enel

B 0

)

, (1.9)

respectively. Notice that if we had put under the carpet the matrix character of the
conductivity and resistivity and if we had only considered the longitudinal components,
we would have come to the counter-intuitive conclusion that the (longitudinal) resis-
tivity would vanish at the same time as the (longitudinal) conductivity. The transport
properties in the clean limit ωCτ → ∞ are therefore entirely governed, in the presence
of a magnetic field, by the off-diagonal, i.e. transverse, components of the conductiv-
ity/resistivity. We will come back to this particular feature of quantum Hall systems
when discussing the integer quantum Hall effect below.

Resistivity and resistance. The above treatment of electronic transport in the frame-
work of the Drude model allowed us to calculate the conductivity or resistivity of
classical diffusive 2D electrons in a magnetic field. However, an experimentalist does
not measure a conductivity or resistivity, i.e. quantities that are easier to calculate for
a theoretician, but a conductance or a resistance. Usually, these quantities are related
to one another but depend on the geometry of the conductor – the resistance R is thus
related to the resistivity ρ by R = (L/A)ρ, where L is the length of the conductor and
A its cross section. From the scaling point of view of a d-dimensional conductor, the
cross section scales as Ld−1, such that the scaling relation between the resistance and
the resistivity is

R ∼ ρL2−d, (1.10)

and one immediately notices that a 2D conductor is a special case. From the dimen-
sional point of view, resistance and resistivity are the same in 2D, and the resistance
is scale-invariant. Naturally, this scaling argument neglects the fact that the length
L and the width W (the 2D cross section) do not necessarily coincide: indeed, the
resistance of a 2D conductor depends in general on the so-called aspect ratio L/W
via some factor f(L/W ) (Akkermans and Montambaux, 2008). However, in the case
of the transverse Hall resistance it is the length of the conductor itself that plays the
role of the cross section, such that the Hall resistivity and the Hall resistance truely
coincide, i.e. f = 1. We will see in Chap. 3 that this conclusion also holds in the
case of the quantum Hall effect and not only in the classical regime. Moreover, the
quantum Hall effect is highly insensitive to the particular geometric properties of the
sample used in the transport measurement, such that the quantisation of the Hall
resistance is surprisingly precise (on the order of 10−9) and the quantum Hall effect is
used nowadays in the definition of the resistance standard.

1.1.3 Shubnikov-de Haas effect

A first indication for the relevance of quantum phenomena in transport measurements
of 2D electrons in a strong magnetic field was found in 1930 with the discovery of the
Shubnikov-de Haas effect (Shubnikov and de Haas, 1930). Whereas the classical result
(1.5) for the resistivity tensor stipulates that the longitudinal resistivity ρL = 1/σ0

(and thus the longitudinal resistance) is independent of the magnetic field, Shubnikov
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Fig. 1.2 (a) Sketch of the Shubnikov-de Haas effect. Above a critical field Bc, the longitudi-

nal resistance (grey) starts to oscillate as a function of the magnetic field. The Hall resistance

remains linear in B. (b) Density of states (DOS). In a clean system, the DOS consists of

equidistant delta peaks (grey) at the energies ǫn = h̄ωC(n + 1/2), whereas in a sample with

a stronger impurity concentration, the peaks are broadened (dashed lines). The continuous

black line represents the sum of overlapping peaks, and EF denotes the Fermi energy.

and de Haas found that above some characteristic magnetic field the longitudinal
resistance oscillates as a function of the magnetic field. This is schematically depicted
in Fig. 1.2(a). In contrast to this oscillation in the longitudinal resistance, the Hall
resistance remains linear in the B field, in agreement with the classical result from the
Drude model (1.7).

The Shubnikov-de Haas effect is a consequence of the energy quantisation of the
2D electron in a strong magnetic field, as it has been shown by Landau at roughly the
same moment. This so-called Landau quantisation will be presented in great detail in
Sec. 2. In a nutshell, Landau quantisation consists of the quantisation of the cyclotron
radius, i.e. the radius of the circular trajectory of an electron in a magnetic field. As a
consequence this leads to the quantisation of its kinetic energy into so-called Landau
levels (LLs), ǫn = h̄ωC(n+ 1/2), where n is an integer. In order for this quantisation
to be relevant, the magnetic field must be so strong that the electron performs at least
one complete circular period without any collision, i.e. ωCτ > 1. This condition defines
the critical magnetic field Bc ≃ mb/eτ = µ−1 above which the longitudinal resistance
starts to oscillate, in terms of the mobility (1.6). Notice that today’s samples of highest
mobility are characterised by µ ∼ 107 cm2/Vs = 103 m2/Vs such that one may obtain
Shubnikov-de Haas oscillations at magnetic fields as low as Bc ∼ 1 mT.

The effect may be understood within a slightly more accurate theoretical descrip-
tion of electronic transport (e.g. with the help of the Boltzmann transport equation)
than the Drude model. The resulting Einstein relation relates then the conductivity
to a diffusion equation, and the longitudinal conductivity

σL = e2Dρ(EF ) (1.11)

turns out to be proportional to the density of states (DOS) ρ(EF ) at the Fermi energy
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EF rather than the electronic density,1 Due to Landau quantisation, the DOS of a
clean system consists of a sequence of delta peaks at the energies ǫn = h̄ωC(n+ 1/2),

ρ(ǫ) =
∑

n

gnδ(ǫ− ǫn),

where gn is takes into account the degeneracy of the energy levels. These peaks are
eventually impurity-broadened in real samples and may even overlap [see Fig. 1.2(b)],
such that the DOS oscillates in energy with maxima at the positions of the energy levels
ǫn. Consider a fixed number of electrons in the sample that fixes the zero-field Fermi
energy the B-field dependence of which we omit in the argument.2 When sweeping
the magnetic field, one varies the energy distance between the LLs, and the DOS thus
becomes maximal when EF coincides with the energy of a LL and minimal if EF lies
between two adjacent LLs. The resulting oscillation in the DOS as a function of the
magnetic field translates via the relation (1.11) into an oscillation of the longitudinal
conductivity (or resistivity), which is the essence of the Shubnikov-de Haas effect.

1.1.4 Integer quantum Hall effect

An even more striking manifestation of quantum mechanics in the transport properties
of 2D electrons in a strong magnetic field was revealed 50 years later with the discovery
of the integer quantum Hall effect (IQHE) by v. Klitzing, Dorda, and Pepper in 1980
(v. Klitzing, Dorda and Pepper, 1980). The Nobel Prize was attributed in 1985 to v.
Klitzing for this extremely important discovery.

Indeed, the discovery of the IQHE was intimitely related to technological advances
in material science, namely in the fabrication of high-quality field-effect transistors
for the realisation of 2D electron gases. These technological aspects will be briefly
reviewed in separate a section (Sec. 1.2).

The IQHE occurs at low temperatures, when the energy scale set by the tempera-
ture kBT is significantly smaller than the LL spacing h̄ωC . It consists of a quantisation
of the Hall resistance, which is no longer linear in B, as one would expect from the
classical treatment presented above, but reveals plateaus at particular values of the
magnetic field (see Fig. 1.3). In the plateaus, the Hall resistance is given in terms of
universal constants – it is indeed a fraction of the inverse quantum of conductance
e2/h, and one observes

RH =

(

h

e2

)

1

n
, (1.12)

1Notice, however, that the Fermi energy and thus the DOS is a function of the electronic density.
Furthermore we mention that in a fully consistent treatment also the diffusion constant D depends on
the density of states and eventually the magnetic field. This affects the precise form of the oscillation
but not its periodicity.

2Naturally, this is a crude assumption because if the density of states ρ(ǫ, B) depends on the
magnetic field, so does the Fermi energy via the relation

Z EF

0

dǫ ρ(ǫ, B) = nel.

However, the basic features of the Shubnikov-de Haas oscillation may be understood when keeping
the Fermi energy constant.
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Fig. 1.3 Typical signature of the quantum Hall effect (measured by J. Smet, MPI-Stuttgart).

Each plateau in the Hall resistance is accompanied by a vanishing longitudinal resistance.

The classical Hall resistance is indicated by the dashed-dotted line. The numbers label the

plateaus: integral n denote the IQHE and n = p/q, with integral p and q, indicate the FQHE.

in terms of an integer n. The plateau in the Hall resistance is accompanied by a vanish-
ing longitudinal resistance. This is at first sight reminiscent of the Shubnikov-de Haas
effect, where the longitudinal resistance also reveals minima although it never van-
ished. The vanishing of the longitudinal resistance at the Shubnikov-de Haas minima
may indeed be used to determine the crossover from the Shubnikov-de Haas regime to
the IQHE.

It is noteworth to mention that the quantisation of the Hall resistance (1.12) is
a universal phenomenon, i.e. independent of the particular properties of the sample,
such as its geometry, the host materials used to fabricate the 2D electron gas and,
even more importantly, its impurity concentration or distribution. This universality
is the reason for the enormous precision of the Hall-resistance quantisation (typically
∼ 10−9), which is nowadays – since 1990 – used as the resistance standard,3

RK−90 = h/e2 = 25 812.807 Ω, (1.13)

which is also called the Klitzing constant (Poirier and Schopfer, 2009a; Poirier and Schopfer, 2009b).
Furthermore, as already mentioned in Sec. 1.1.2, the vanishing of the longitudinal re-

3The subscript K honours v. Klitzing and 90 stands for the date since which the unit of resistance
is defined by the IQHE.
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sistance indicates that the scattering time tends to infinity [see Eq. (1.9)] in the IQHE.
This is another indication of the above-mentioned universality of the effect, i.e. that
IQHE does not depend on a particular impurity (or scatterer) arrangement.

A detailed presentation of the IQHE, namely the role of impurities, may be found
in Chap. 3.

1.1.5 Fractional quantum Hall effect

Three years after the discovery of the IQHE, an even more unexpected effect was ob-
served in a 2D electron system of higher quality, i.e. higher mobility: the fractional
quantum Hall effect (FQHE). The effect ows its name to the fact that contrary to the
IQHE, where the number n in Eq. (1.12) is an integer, a Hall-resistance quantisation
was discovered by Tsui, Störmer and Gossard with n = 1/3 (Tsui, Störmer and Gossard, 1983).
From the phenomenological point of view, the effect is extremely reminiscent of the
IQHE: whereas the Hall resistance is quantised and reveals a plateau, the longitudinal
resistance vanishes (see Fig. 1.3, where different instances of both the IQHE and the
FQHE are shown). However, the origins of the two effects are completely different:
whereas the IQHE may be understood from Landau quantisation, i.e. the kinetic-
energy quantisation of independent electrons in a magnetic field, the FQHE is due
to strong electronic correlations, when a LL is only partially filled and the Coulomb
interaction between the electrons becomes relevant. Indeed, in 1983 Laughlin showed
that the origin of the observed FQHE with n = 1/3, as well as any n = 1/q with q
being an odd integer, is due to the formation of a correlated incompressible electron
liquid with extremely exotic properties (Laughlin, 1983), which will be reviewed in
Chap. 4. As for the IQHE, the discovery and the theory of the FQHE was awarded a
Nobel Prize (1998 for Tsui, Störmer and Laughlin).

After the discovery of the FQHE with n = 1/3,4 a plethora of other types of FQHE
has been dicovered and theoretically described. One should first mention the 2/5 and
3/7 states (i.e. with n = 2/5 and n = 3/7), which are part of the series p/(2sp±1), with
the integers s and p. This series has found a compelling interpretation within the so-
called composite-fermion (CF) theory according to which the FQHE may be viewed as
an IQHE of a novel quasi-particle that consists of an electron that “captures” an even
number of flux quanta (Jain, 1989; Jain, 1990). The basis of this theory is presented
in Sec. 4.4. Another intriguing FQHE was discovered in 1987 by Willet et al., with
n = 5/2 and 7/2 (Willett, Eisenstein, Stormer, Tsui, Gossard and English, 1987) –
it is in so far intriguing as up to this moment only states n = p/q with odd de-
nominators had been observed in monolayer systems. From a theoretical point of
view, it was shown in 1991 by Moore and Read (Moore and Read, 1991) and by
Greiter, Wilczek and Wen (Greiter, Wen and Wilczek, 1991) that this FQHE may
be described in terms of a very particular, so-called Pfaffian, wave function, which
involves particle pairing and the excitations of which are anyons with non-Abelian
statistics. These particles are intensively studied in today’s research because they
may play a relevant role in quantum computation. The physics of anyons will be in-
troduced briefly in Sec. 4.3. Finally, we would mention in this brief (and naturally

4The quantity n determines the filling of the LLs, usually described by the Greek letter ν, as we
will discuss in Sec. 2.
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incomplete) historical overview a FQHE with n = 4/11 discovered in 2003 by Pan
et al. (Pan, Stormer, Tsui, Pfeiffer, Baldwin and West, 2003): it does not fit into the
above-mentioned CF series, but it would correspond to a FQHE of CFs rather than
an IQHE of CFs.

1.1.6 Relativistic quantum Hall effect in graphene

Recently, quantum Hall physics experienced another unexpected boost with the dis-
covery of a “relativistic” quantum Hall effect in graphene, a one-atom-thick layer of
graphite (Novoselov, Geim, Morosov, Jiang, Katsnelson, Grigorieva, Dubonos and Firsov, 2005;
Zhang, Tan, Stormer and Kim, 2005). Electrons in graphene behave as if they were rel-
ativistic massless particles. Formally, their quantum-mechanical behaviour is no longer
described in terms of a (non-relativistic) Schrödinger equation, but rather by a rel-
ativistic 2D Dirac equation (Castro Neto, Guinea, Peres, Novoselov and Geim, 2009).
As a consequence, Landau quantisation of the electrons’ kinetic energy turns out to
be different in graphene than in conventional (non-relativistic) 2D electron systems,
as we will discuss in Sec. 2. This yields a “relativistic” quantum Hall effect with an
unusual series for the Hall plateaus. Indeed rather than having plateaus with a quan-
tised resistance according to RH = h/e2n, with integer values of n, one finds plateaus
with n = ±2(2n′ + 1), in terms of an integer n′, i.e. with n = ±2,±6,±10, .... The
different signs in the series (±) indicate that there are two different carriers, electrons
in the conduction band and holes in the valence band, involved in the quantum Hall
effect in graphene. As we will briefly discuss in Sec. 1.2, one may easily change the
character of the carriers in graphene with the help of the electric field effect.

Interaction effects may be relevant in the formation of other integer Hall plateaus,
such as n = 0 and n = ±1 (Zhang, Jiang, Small, Purewal, Tan, Fazlollahi, Chudow, Jaszczak, Stormer and Kim, 2006
which do not occur naturally in the series n = ±2(2n′ + 1) characteristic of the rel-
ativistic quantum Hall effect. Furthermore, a FQHE with n = 1/3 has very recently
been observed, although in a simpler geometric (two-terminal) configuration than the
standard one depicted in Fig. 1.1(a).5

1.2 Two-Dimensional Electron Systems

As already mentioned above, the history of the quantum Hall effect is intimitely related
to technological advances in the fabrication of 2D electron systems with high electronic
mobilities. The increasing mobility allows one to probe the fine structure of the Hall
curve and thus to observe those quantum Hall states which are more fragile, such as
some exotic FQHE states (e.g. the 5/2, 7/2 or the 4/11 states). This may be com-
pared to the quest for high resolutions in optics: the higher the optical resolution, the
better the chance of observing tinier objects. In this sense, electronic mobility means
resolution and the tiny object is the quantum Hall state. As an order of magnitude,
today’s best 2D electron gases (in GaAs/AlGaAs heterostructures) are characterised
by mobilities µ ∼ 107 cm2/Vs.

5The observation of this FQHE has been reported orally by E.Andrei and P. Kim at the workshop
“Graphene 2009” (July 25 - August 08) in Benasque, Spain, but not yet in form of an article.
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Fig. 1.4 MOSFET. The inset I shows a sketch of a MOSFET. (a) Level structure at

VG = 0. In the metallic part, the band is filled up to the Fermi energy EF whereas the oxide

is insulating. In the semiconductor, the Fermi energy lies in the band gap (energy gap between

the valence and the conduction bands). Close to the valence band, albeit above EF , are the

acceptor levels. (b) The chemical potential in the metallic part may be controled by the gate

voltage VG via the electric field effect. As a consequence of the introduction of holes the

semiconductor bands are bent downwards, and above a threshold voltage (c), the conduction

band is filled in the vicinity of the interface with the insulator. One thus obtains a 2D electron

gas. Its confinement potential of which is of triangular shape, the levels (electronic subbands)

of which are represented in the inset II.

1.2.1 Field-effect transistors

The samples used in the discovery and in the first studies of the IQHE were so-
calles metal-oxide-semiconductor field-effect transistors (MOSFET). A metallic layer
is seperated from a semiconductor (typically doped silicon) by an insulating oxide
(e.g. SiO2) layer (see inset I in Fig. 1.4). The chemical potential in the metallic layer
may be varied with the help of a gate voltage VG. At VG = 0, the Fermi energy in
the semiconductor lies in the band gap below the acceptor levels of the dopants [Fig.
1.4(a)]. When lowering the chemical potential in the metal with the help of a positive
gate voltage VG > 0, one introduces holes in the metal that attract, via the electric
field effect, electrons from the semiconductor to the semiconductor-insulator interface.
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Fig. 1.5 Semiconductor heterostructure (GaAs/AlGaAs). (a) Dopants are introduced in

the AlGaAs layer at a certain distance from the interface. The Fermi energy lies below the in

the band gap and is pinned by the dopant levels. The GaAs conduction band has an energy

that is lower than that of the dopant levels, such that it is energetically favourable for the

electrons in the dopant layer to populate the GaAs conduction band in the vicinity of the

interface. (b) This polarisation bends the bands in the vicinity of the interface between the

two semiconductors, and thus a 2D electron gas is formed there on the GaAs side.

These electrons populate the acceptor levels, and as a consequence, the semiconductor
bands are bent downwards when they approach the interface, such that the filled
acceptor levels lie now below the Fermi energy [Fig. 1.4(b)].

Above a certain threshold of the gate voltage, the bending of the semiconductor
bands becomes so strong that not only the acceptor levels are below the Fermi energy,
but also the conduction band in the vicinity of the interface which consequently gets
filled with electrons [Fig. 1.4(c)]. One thus obtains a confinement potential of triangular
shape for the electrons in the conduction band, the dynamics of which is quantised
into discrete electronic subbands in the perpendicular z-direction (see inset II in Fig.
1.4). Naturally, the electronic wave functions are then extended in the z-direction,
but in typical MOSFETs only the lowest electronic subband E0 is filled, such that
the electrons are purely 2D from a dynamical point of view, i.e. there is no electronic
motion in the z-direction.

The typical 2D electronic densities in these systems are on the order of nel ∼ 1011

cm−2, i.e. much lower than in usual metals. This turns out to be important in the
study of the IQHE and FQHE, because the effects occur, as we will show below, when
the 2D electronic density is on the order of the density of magnetic flux nB = B/(h/e)
threading the system, in units of the flux quantum h/e. This needs to be compared
to metals where the surface density is on the order of 1014 cm−2, which would require
inaccessibly high magnetic fields (on the order of 1000 T) in order to probe the regime
nel ∼ nB.

1.2.2 Semiconductor heterostructures

The mobility in MOSFETs, which is typically on the order of µ ∼ 106 cm2/Vs, is
limited by the quality of the oxide-semiconductor interface (surface roughness). This
technical difficulty is circumvented in semiconductor heterostructures – most popular
are GaAs/AlGaAs heterostructures – which are grown by molecular-beam epitaxy
(MBE), where high-quality interfaces with almost atomic precision may be achieved,
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Fig. 1.6 Schematic view of graphene on a SiO2 substrate with a doped Si (metallic) back-

gate. The system graphene-SiO2-backgate may be viewed as a capacitor the charge density

of which is controled by a gate voltage VG.

with mobilities on the order of µ ∼ 107 cm2/Vs. These mobilities were necessary
to observe the FQHE, which was indeed first observed in a GaAs/AlGaAs sample
(Tsui, Störmer and Gossard, 1983).

In the (generic) case of GaAs/AlGaAs, the two semiconductors do not possess
the same band gap – indeed that of GaAs is smaller than that of AlGaAs, which is
chemically doped by donor ions at a certain distance from the interface between GaAs
and AlGaAs [Fig 1.5(a)]. The Fermi energy is pinned by these donor levels in AlGaAs,
which may have a higher energy than the originally unoccupied conduction band in
the GaAs part, such that it becomes energetically favourable for the electrons in the
donor levels to occupy the GaAs conduction band in the vicinity of the interface. As
a consequence, the energy bands of AlGaAs are bent upwards, whereas those of GaAs
are bent downwards. Similarly to the above-mentioned MOSFET, one thus obtains
a 2D electron gas at the interface on the GaAs side, with a triangular confinement
potential.

1.2.3 Graphene

Graphene, a one-atom thick layer of graphite, presents a novel 2D electron system,
which, from the electronic point of view, is either a zero-overlap semi-metal or a
zero-gap semiconductor, where the conduction and the valence bands are no longer
separated by an energy gap. Indeed, in the absence of doping, the Fermi energy lies
exactly at the points where the valence band touches the conduction band and where
the density of states vanishes linearly.

In order to vary the Fermi energy in graphene, one usually places a graphene flake
on a 300 nm thick insulating SiO2 layer which is itself placed on top of a positively
doped metallic silicon substrate (see Fig. 1.6). This sandwich structure, with the metal-
lic silicon layer that serves as a backgate, may thus be viewed as a capacitor (Fig. 1.6)
the capacitance of which is

C =
Q

VG
=
ǫ0ǫA

d
, (1.14)

where Q = en2DA is the capacitor charge, in terms of the total surface A, VG is the
gate voltage, and d = 300 nm is the thickness of the SiO2 layer with the dielectric
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constant ǫ = 3.7. The field-effect induced 2D carrier density is thus given by

n2D = αVG with α ≡ ǫ0ǫ

ed
≃ 7.2 × 1010 cm−2

V
. (1.15)

The gate voltage may vary roughly between −100 and 100 V, such that one may
induce maximal carrier densities on the order of 1012 cm−2, on top of the intrinsic
carrier density which turns out to be zero in graphene, as will be discussed in the
next chapter. At gate voltages above ±100 V, the capacitor breaks down (electrical
breakdown).

In contrast to 2D electron gases in semiconductor heterostructures, the mobilities
achieved in graphene are rather low: they are typically on the order of µ ∼ 104 − 105

cm2/Vs. Notice, however, that these graphene samples are fabricated in the so-called
exfoliation technique, where one “peals” thin graphite crystals, under ambiant condic-
tions, whereas the highest-mobility GaAs/AlGaAs laboratory samples are fabricated
with a very high technological effort. The mobilities of graphene samples are compa-
rable to those of commercial silicon-based electronic elements.



2

Landau Quantisation

The basic ingredient for the understanding of both the IQHE and the FQHE is Landau
quantisation, i.e. the kinetic-energy quantisation of a (free) charged 2D particle in a
perpendicular magnetic field. In this chapter, we give a detailed introduction to the
different aspects of Landau quantisation. We have chosen a very general presentation
of this quantisation in order to account for both a non-relativistic and a relativistic 2D
particle some properties of which, such as the level degeneracy, are identical. In Sec.
2.1, we introduce the basic Hamiltonians for 2D particles in the absence of a magnetic
field and discuss both Schrödinger- and Dirac-type particles, and discuss the case of a
non-zero B-field in Sec. 2.2. Sec. 2.3 is devoted to the discussion of the LL structure
of non-relativistic and relativistic particles.

2.1 Basic One-Particle Hamiltonians for B = 0

In this section, we introduce the basic Hamiltonians which we treat in a quantum-
mechanical manner in the following parts. Quite generally, we consider a Hamiltonian
for a 2D particle1 that is translation invariant, i.e. the momentum p = (px, py) is a
constant of motion, in the absence of a magnetic field. In quantum mechanics, this
means that the momentum operator commutes with the Hamiltonian, [p, H ] = 0, and
that the eigenvalue of the momentum operator is a good quantum number.

2.1.1 Hamiltonian of a free particle

In the case of a free particle, this is a very natural assumption, and one has for the
non-relativistic case,

H =
p2

2m
, (2.1)

in terms of the particle mass m.2 However, we are interested, here, in the motion
of electrons in some material (in a metal or at the interface of to semiconductors).
It seems, at first sight, to be a very crude assumption to describe the motion of an
electron in a crystalline environment in the same manner as a particle in free space.

1All vector quantities (also in the quantum-mechanical case of operators) v = (vx, vy) are hence
2D, unless stated explicitly.

2The statement that p is a constant of motion remains valid also in the case of a relativistic
particle. However, the Hamiltonian description depends on the frame of reference because the energy
is not Lorentz-invariant, i.e. invariant under a transformation into another frame of reference that
moves at constant velocity with respect to the first one. For this reason a Lagrangian rather than a
Hamiltonian formalism is often prefered in relativistic quantum mechanics.
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Indeed, a particle in a lattice in not described by the Hamiltonian (2.1) but rather by
the Hamiltonian

H =
p2

2m
+

N
∑

i

V (r − ri), (2.2)

where the last term represents the electrostatic potential caused by the ions situated
at the lattice sites ri. Evidently, the Hamiltonian now depends on the position r of the
particle with respect to that of the ions, and the momentum p is therefore no longer
a constant of motion or a good quantum number.

This problem is solved with the help of Bloch’s theorem: although an arbitrary
spatial translation is not an allowed symmetry operation as it is the case for a free
particle (2.1), the system is invariant under a translation by an arbitrary lattice vector
if the lattice is of infinite extension – an assumption we make here.3 In the same manner
as for the free particle, where one defines the momentum as the generator of a spatial
translation, one may then define a generator of a lattice translation. This generator
is called the lattice momentum or also the quasi-momentum. As a consequence of the
discreteness of the lattice translations, not all values of this lattice momentum are
physical, but only those within the first Brillouin zone (BZ) – any vibrational mode,
be it a lattice vibration or an electronic wave, with a wave vector outside the first BZ
can be described by a mode with a wave vector within the first BZ. Since these lecture
notes cannot include a full course on basic solid-state physics, we refer the reader to
standard textbooks on solid-state physics (Ashcroft and Mermin, 1976; Kittel, 2005).

The bottom line is that also in a (perfect) crystal, the electrons may be described
in terms of a Hamiltonian H(px, py) if one keeps in mind that the momentum p in
this expression is a lattice momentum restricted to the first BZ. Notice, however, that
although the resulting Hamiltonian may often be written in the form (2.1), the mass
is generally not the free electron mass but a band mass mb that takes into account the
particular features of the energy bands4 – indeed, the mass may even depend on the
direction of propagation, such that one should write the Hamiltonian more generally
as

H =
p2

x

2mx
+

p2
y

2my
.

2.1.2 Dirac Hamiltonian in graphene

The above considerations for electrons in a 2D lattice are only valid in the case of a
Bravais lattice, i.e. a lattice in which all lattice sites are equivalent from a crystal-
lographic point of view. However, some lattices, such as the honeycomb lattice that
describes the arrangement of carbon atoms in graphene due to the sp2 hybridisation
of the valence electrons, are not Bravais lattices. In this case, one may describe the
lattice as a Bravais lattice plus a particular pattern of Ns sites, called the basis. This
is illustrated in Fig. 2.1(a) for the case of the honeycomb lattice. When one compares

3Although this may seem to be a typical “theoretician’s assumption”, it is a very good approxi-
mation when the lattice size is much larger than all other relevant length scales, such as the lattice
spacing or the Fermi wave length.

4In GaAs, e.g., the band mass is mb = 0.068m0, in terms of the free electron mass m0.
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Fig. 2.1 (a) Honeycomb lattice. The vectors δ1, δ2, and δ3 connect nn carbon atoms,

separated by a distance a = 0.142 nm. The vectors a1 and a2 are basis vectors of the triangular

Bravais lattice. (b) Reciprocal lattice of the triangular lattice. Its primitive lattice vectors are

a∗
1 and a∗

2. The shaded region represents the first Brillouin zone (BZ), with its centre Γ and

the two inequivalent corners K (black squares) and K′ (white squares). The thick part of the

border of the first BZ represents those points which are counted in the definition such that

no points are doubly counted. The first BZ, defined in a strict manner, is, thus, the shaded

region plus the thick part of the border. For completeness, we have also shown the three

inequivalent cristallographic points M , M ′, and M ′′ (white triangles).

a site A (full circle) with a site B (empty circle), one notices that the environment of
these two sites is different: whereas a site A has nearest neighbours in the directions
north-east, north-west and south, a site B has nearest neighbours in the directions
north, south-west and south-east. This precisely means that the two sites are not
equivalent from a crystallographic point of view – although they may be equivalent
from a chemical point of view, i.e. occupied by the same atom or ion type (carbon in
the case of graphene). However, all sites A form a triangular Bravais lattice as well as
all sites B. Both subsets of lattice sites form the two sublattices, and the honeycomb
lattice may thus be viewed as a triangular Bravais lattice with a two-atom basis, e.g.
the pattern of two A and B sites connected by the vector δ3.

In order to calculate the electronic bands in a lattice with Ns Bravais sublattices,
i.e. a basis with Ns sites, one needs to describe the general electronic wave function
as a superposition of Ns different wave functions, which satisfy each Bloch’s theorem
for all sublattices (Ashcroft and Mermin, 1976; Kittel, 2005). Formally, this may be
described in terms of a Ns × Ns matrix, the eigenvalues of which yield Ns different
energy bands. In a lattice with Ns different sublattices, one therefore obtains one
energy band per sublattice, and for graphene, one obtains two different bands for the
conducting electrons, the valence band and the conduction band.

The Hamiltonian for low-energy electrons in reciprocal space reads

H(k) = t

(

0 γ∗k
γk 0

)

, (2.3)

which is obtained within a tight-binding model, where one considers electronic hopping
between nearest-neighbouring sites with a hopping amplitude t. Because the nearest
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Fig. 2.2 Energy bands of graphene. The valence band touches the conduction band in

the two inequivalent BZ corners K and K′. For undoped graphene, the Fermi energy lies

precisely in the contact points, and the band dispersion in the vicinity of these points is of

conical shape.

neighbour of a site A is a site B and vice versa [see Fig. 2.1(a)], the Hamiltonian is
off-diagonal, and the off-diagonal elements are related by complex conjugation due to
time-reversal symmetry [H(−k)∗ = H(k)]. As already mentioned above, the lattice
momentum k is restricted to the first BZ, which is of hexagonal shape and which we
have depicted in Fig. 2.1(b) for completeness. The precise form of the functions γk is
derived in Appendix A [Eq. (A.9)]. The band structure is obtained by diagonalising
the Hamiltonian, and one finds the two bands, labelled by λ = ±, ǫλ(k) = λt|γk|,
which are plotted in Fig. 2.2. The valence band (λ = −) touches the conduction band
(λ = +) in the two inequivalent corners K and K ′ of the first BZ. Because there are as
many electrons in the π-orbitals, that determine the low-energy conduction properties
of graphene, as lattice sites, the overall energy band structure is half-filled. This is due
to the two spin orientations of the electrons, which allow for a quantum-mechanical
double occupancy of each π-orbital. As a consequence, the Fermi energy lies exactly
in the contact points K and K ′ of the two bands unless the graphene sheet is doped,
e.g. with the help of the electric field effect, as described in Sec. 1.2 of the previous
chapter.

The inset in Fig. 2.2 shows the band dispersion in the vicinity of the contact points
K and K ′, the linearity of which is sufficient to describe the low-energy electronic
properties in graphene, i.e. when all relevant energy scales are much smaller than the
full band width.5 The conical form of the two bands is reminiscent of that of relativistic
particles, the general dispersion of which is E = ±

√

m2c4 + p2c2, in terms of the light
velocity c and the particle massm. If the latter is zero, one obtains preciselyE = ±c|p|,

5Indeed, in graphene, the relevant low-energy scales are in the 10 − 100 meV regime, whereas
non-linear corrections of the band dispersion become relevant in the eV regime.
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as in the case of low-energy electrons in graphene (inset of Fig. 2.2), which may thus
be treated as massless Dirac fermions. Notice that in the continuum description of
electrons in graphene, we have two electron types – one for the K point and another
one for the K ′ point. This doubling is called valley degeneracy which is two-fold here.

The analogy between electrons in graphene and massless relativistic particles is
corroborated by a low-energy expansion of the Hamiltonian (2.3) around the contact
points K and K ′, at the momenta K and K′ = −K [see Fig. 2.1(a)], k = ±K + p/h̄,
where |p/h̄| ≪ |K|. One may then expand the function γ±K+p/h̄ to first order, and
one obtains formally6

H = t

(

0 ∇γ∗K · p
∇γK · p 0

)

= v

(

0 px − ipy

px + ipy 0

)

= vp · σ

where σ = (σx, σy) in terms of the Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

and σz =

(

1 0
0 −1

)

and where we have chosen to expand the Hamiltonian (2.3) around the K point.7

Here, the Fermi velocity v plays the role of the velocity of light c, which is though
roughly 300 times larger, c ≃ 300v. The details of the above derivation may be found in
Appendix A. The above Hamiltonian is indeed formally that of massless 2D particles,
and it is sometimes called Weyl or Dirac Hamiltonian.

We will discuss, in the remainder of this chapter, how the two Hamiltonians

HS =
p2

2mb
and HD = vp · σ , (2.4)

for non-relativistic and relativistic particles, respectively, need to be modified in order
to account for a non-zero magnetic field.

2.2 Hamiltonians for Non-Zero B Fields

2.2.1 Minimal coupling and Peierls substitution

In order to describe free electrons in a magnetic field, one needs to replace the mo-
mentum by its gauge-invariant form (Jackson, 1999)

p → Π = p + eA(r), (2.5)

where A(r) is the vector potential that generates the magnetic field B = ∇ × A(r).
This gauge-invariant momentum is proportional the electron velocity v, which must
naturally be gauge-invariant because it is a physical quantity. Notice that because
A(r) is not gauge invariant, neither is the momentum p. Remember that adding the
gradiant of an arbitrary derivable function λ(r), A(r) → A(r) + ∇λ(r), does not

6Notice that γ±K = 0 by symmetry.
7One obtains a similar result at the K ′ point, see Eq. (A.15) in Appendix A.
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change the magnetic field because the rotational of a gradient is zero. Indeed, the
momentum transforms as p → p − e∇λ(r) under a gauge transformation in order
to compensate the transformed vector potential, such that Π is gauge-invariant. The
substitution (2.5) is also called minimal substitution.

In the case of electrons on a lattice, this substitution is more tricky because of the
presence of several bands. Furthermore, the vector potential is unbound, even for a
finite magnetic field; this becomes clear if one chooses a particular gauge, such as e.g.
the Landau gauge AL(r) = B(−y, 0, 0), in which case the value of the vector potential
may become as large as B×Ly, where Ly is the macroscopic extension of the system in
the y-direction. However, it may be shown that the substitution (2.5), which is called
Peierls substitution in the context of electrons on a lattice, remains correct as long as
the lattice spacing a is much smaller than the magnetic length

lB =

√

h̄

eB
, (2.6)

which is the fundamental length scale in the presence of a magnetic field. Because a is
typically an atomic scale (∼ 0.1 to 10 nm) and lB ≃ 26 nm/

√

B[T], this condition is
fulfilled in all atomic lattices for the magnetic fields, which may be achieved in today’s
high-field laboratories (∼ 45 T in the continuous regime and ∼ 80 T in the pulsed
regime).8

With the help of the (Peierls) substitution (2.5), one may thus immediately write
down the Hamiltonian for charged particles in a magnetic field if one knows the Hamil-
tonian in the absence of a magnetic field,

H(p) → H(Π) = H(p + eA) = HB(p, r).

Notice that because of the spatial dependence of the vector potential, the resulting
Hamiltonian is no longer translation invariant, and the (gauge-dependent) momen-
tum p is no longer a conserved quantity. We will limit the discussion to the B-field
Hamiltonians corresponding to the Hamiltonians (2.4)

HB
S =

[p + eA(r)]2

2mb
(2.7)

for non-relativistic and
HB

D = v[p + eA(r)] · σ (2.8)

for relativistic 2D charged particles, respectively.

2.2.2 Quantum mechanical treatment

In order to analyse the one-particle Hamiltonians (2.7) and (2.8) in a quantum-
mechanical treatment, we use the standard method, the canonical quantisation (Cohen-Tannoudji, Diu and Laloë, 1973
where one interprets the physical quantities as operators that act on state vectors in
a Hilbert space. These operators do in general not commute with each other, i.e. the

8Higher magnetic fields may be obtained only in semi-destructive experiments, in which the sample
survives the experiment but not the coil that is used to produce the magnetic field.
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order matters in which they act on the state vector that describe the physical system.
Formally one introduces the commutator [O1,O2] ≡ O1O2 − O2O1 between the two
operators O1 and O2, which are said to commute when [O1,O2] = 0 or else not to
commute. The basic physical quantities in the argument of the Hamiltonian are the
2D position r = (x, y) and its canonical momenta p = (px, py), which satisfy the
commutation relations

[x, px] = ih̄, [y, py] = ih̄ and [x, y] = [px, py] = [x, py ] = [y, px] = 0, (2.9)

i.e. each component of the position operator does not commute with the momentum
in the corresponding direction. This non-commutativity between the position and its
associated momentum is the origin of the Heisenberg inequality according to which
one cannot know precisely both the position of a quantum-mechanical particle and, at
the same moment, its momentum, ∆x∆px >∼ h and ∆y∆py >∼ h.

As a consequence of the commutation relations (2.9), the components of the gauge-
invariant momentum no longer commute themselves,

[Πx,Πy] = [px + eAx(r), py + eAy(r)] = e ([px, Ay] − [py, Ax])

= e

(

∂Ay

∂x
[px, x] +

∂Ay

∂y
[px, y] −

∂Ax

∂x
[py, x] −

∂Ax

∂y
[py, y]

)

,

where we have used the relation9

[O1, f(O2)] =
df

dO2
[O1,O2] (2.10)

between two arbitrary operators, the commutator of which is a c-number or an operator
that commutes itself with both O1 and O2 (Cohen-Tannoudji, Diu and Laloë, 1973).
With the help of the commutation relations (2.9), one finds that

[Πx,Πy] = −ieh̄
(

∂Ay

∂x
− ∂Ax

∂y

)

= −ieh̄ (∇× A)z = −ieh̄B,

and, in terms of the magnetic length (2.6),

[Πx,Πy] = −i h̄
2

l2B
. (2.11)

This equation is the basic result of this section and merits some further discussion.

• As one would have expected for gauge-invariant quantities (the two components
of Π), their commutator is itself gauge-invariant. Indeed, it only depends on
universal constants and the (gauge-invariant) magnetic field B, and not on the
vector potential A.

9More precisely we have used a gradient generalisation of this relation to operator functions that
depend on several different operators,

[O0, f(O1, ...,OJ )] =
J

X

j=1

∂f

∂Oj

[O0,Oj ]

which is valid if [[O0,Oj ],O0] = [[O0,Oj ],Oj ] = 0 for all j = 1, ...,N .
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• The components of the gauge-invariant momentum Π are mutually conjugate in

the same manner as x and px or y and py. Remember that px generates the
translations in the x-direction (and py those in the y-direction). This is similar
here: Πx generates a “boost” of the gauge-invariant momentum in the y-direction,
and similarly Πy one in the x-direction.

• As a consequence, one may not diagonalise at the same time Πx and Πy , in
contrast to the zero-field case, where the arguments of the Hamiltonian, px and
py, commute.

For solving the Hamiltonians (2.7) and (2.8), it is convenient to use the pair of
conjugate operators Πx and Πy to introduce ladder operators in the same manner
as in the quantum-mechanical treatment of the one-dimensional harmonic oscillator.
Remember from your basic quantum-mechanics class that the ladder operators may
be viewed as the complex position of the one-dimensional oscillator in the phase space,
which is spanned by the position (x-axis) and the momentum (y-axis),

ã =
1√
2

(

x

x0
− i

p

p0

)

and ã† =
1√
2

(

x

x0
+ i

p

p0

)

,

where x0 =
√

h̄/mbω and p0 =
√
h̄mbω are normalisation constants in terms of the

oscillator frequency ω (Cohen-Tannoudji, Diu and Laloë, 1973). The fact that the po-
sition x and the momentum p are conjugate variables and the particular choice of
the normalisation constants yields the commutation relation [ã, ã†] = 1 for the ladder
operators.

In the case of the 2D electron in a magnetic field, the ladder operators play the
role of a complex gauge-invariant momentum (or velocity), and they read

a =
lB√
2h̄

(Πx − iΠy) and a† =
lB√
2h̄

(Πx + iΠy) , (2.12)

where we have chosen the appropriate normalisation such as to obtain the usual com-
mutation relation

[a, a†] = 1. (2.13)

It turns out to be helpful for future calculations to invert the expression for the ladder
operators (2.12),

Πx =
h̄√
2lB

(

a† + a
)

and Πy =
h̄

i
√

2lB

(

a† − a
)

. (2.14)

2.3 Landau Levels

The considerations of the preceding section are extremely useful in the calculation of
the level spectrum associated with the Hamiltonians (2.7) and (2.8) of both the non-
relativistic and the relativistic particles, respectively. The understanding of this level
spectrum is the issue of the present section. Because electrons do not only possess a
charge but also a spin, each level is split into two spin branches separated by the energy
difference ∆Zǫ = gµBB, where g is the g-factor of the host material and µB = eh̄/2m0
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the Bohr magneton. In order to simplify the following presentation of the quantum-
mechanical treatment and the level structure, we neglect this effect associated with
the spin degree of freedom. Formally, this amounts to considering spinless fermions.
Notice, however, that there exist interesting physical properties related to the spin
degree of freedom, which will be treated separately in Chap. 5.

2.3.1 Non-relativistic Landau levels

In terms of the gauge-invariant momentum, the Hamiltonian (2.7) for non-relativistic
electrons reads

HB
S =

1

2mb

(

Π2
x + Π2

y

)

.

The analogy with the one-dimensional harmonic oscillator is apparent if one notices
that both conjugate operators Πx and Πy occur in this expression in a quadratic form.
If one replaces these operators with the ladder operators (2.14), one obtains, with the
help of the commutation relation (2.13),

HB
S =

h̄2

4ml2B

[

a†2 + a†a+ aa† + a2 −
(

a†2 − a†a− aa† + a2
)]

=
h̄2

2ml2B

(

a†a+ aa†
)

=
h̄2

ml2B

(

a†a+
1

2

)

= h̄ωC

(

a†a+
1

2

)

, (2.15)

where we have used the relation ωc = h̄/mbl
2
B between the cyclotron frequency (1.2)

and the magnetic length (2.6) in the last step.
As in the case of the one-dimensional harmonic oscillator, the eigenvalues and

eigenstates of the Hamiltonian (2.15) are therefore those of the number operator a†a,
with a†a|n〉 = n|n〉. The ladder operators act on these states in the usual manner
(Cohen-Tannoudji, Diu and Laloë, 1973)

a†|n〉 =
√
n+ 1|n+ 1〉 and a|n〉 =

√
n|n− 1〉, (2.16)

where the last equation is valid only for n > 0 – the action of a on the ground state
|0〉 gives zero,

a|0〉 = 0. (2.17)

This last equation turns out to be helpful in the calculation of the eigenstates asso-
ciated with the level of lowest energy, as well as the construction of states in higher
levels n (see Sec. 2.4.1)

|n〉 =

(

a†
)n

√
n!

|0〉. (2.18)

The energy levels of the 2D charged non-relativistic particle are therefore discrete
and labelled by the integer n,

ǫn = h̄ωC

(

n+
1

2

)

. (2.19)
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Fig. 2.3 Landau levels as a function of the magnetic field. (a) Non-relativistic case with

ǫn = h̄ωC(n + 1/2) ∝ B(n + 1/2). (b) Relativistic case with ǫλ,n = λ(h̄v/lB)
√

2n ∝ λ
√

Bn.

These levels, which are also called Landau levels (LL), are depicted in Fig. 2.3(a) as a
function of the magnetic field. Because of the linear field-dependence of the cyclotron
frequency, the LLs disperse linearly themselves with the magnetic field.

2.3.2 Relativistic Landau levels

The relativistic case (2.8) for electrons in graphene may be treated exactly in the
same manner as the non-relativistic one. In terms of the ladder operators (2.12), the
Hamiltonian reads

HB
D = v

(

0 Πx − iΠy

Πx + iΠy 0

)

=
√

2
h̄v

lB

(

0 a
a† 0

)

. (2.20)

One notices the occurence of a characteristic frequency ω′ =
√

2v/lB, which plays
the role of the cyclotron frequency in the relativistic case. Notice, however, that this
frequency may not be written in the form eB/mb because the band mass is strictly
zero in graphene, such that the frequency would diverge.10

In order to obtain the eigenvalues and the eigenstates of the Hamiltonian (2.20),
one needs to solve the eigenvalue equation HB

Dψn = ǫnψn. Because the Hamiltonian
is a 2 × 2 matrix, the eigenstates are 2-spinors,

ψn =

(

un

vn

)

,

and we thus need to solve the system of equations

h̄ω′a vn = ǫn un and h̄ω′a† un = ǫn vn , (2.21)

10Sometimes, a cyclotron mass mC is formally introduced via the equality ω′ ≡ eB/mC . However,
this mass is a somewhat artificial quantity, which turns out to depend on the carrier density. We will
therefore not use this quantity in the present lecture notes.
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which yields the equation

a†a vn =
( ǫn
h̄ω′

)2

vn (2.22)

for the second spinor component. One notices that this component is an eigenstate of
the number operator n = a†a, which we have already encountered in the preceding
subsection. We may therefore identify, up to a numerical factor, the second spinor
component vn with the eigenstate |n〉 of the non-relativistic Hamiltonian (2.15), vn ∼
|n〉. Furthermore, one observes that the square of the energy is proportional to this
quantum number, ǫ2n = (h̄ω′)2n. This equation has two solutions, a positive and a
negative one, and one needs to introduce another quantum number λ = ±, which
labels the states of positive and negative energy, respectively. This quantum number
plays the same role as the band index (λ = + for the conduction and λ = − for the
valence band) in the zero-B-field case discussed in Sec. 2.1. One thus obtains the level
spectrum

ǫλ,n = λ
h̄v

lB

√
2n (2.23)

the energy levels of which are depicted in Fig. 2.3(b). These relativistic Landau levels
disperse as λ

√
Bn as a function of the magnetic field.

Once we know the second spinor component, the first spinor component is obtained
from Eq. (2.21), which reads un ∝ a vn ∼ a|n〉 ∼ |n−1〉. One then needs to distinguish
the zero-energy LL (n = 0) from all other levels. Indeed, for n = 0, the first component
is zero as one may see from Eq. (2.17). In this case one obtains the spinor

ψn=0 =

(

0
|n = 0〉

)

. (2.24)

In all other cases (n 6= 0), one has positive and negative energy solutions, which
differ among each other by a relative sign in one of the components. A convenient
representation of the associated spinors is given by

ψλ,n6=0 =
1√
2

(

|n− 1〉
λ|n〉

)

. (2.25)

Experimental observation of relativistic Landau levels. Relativistic LLs have been ob-
served experimentally in transmission spectroscopy, where one shines light on the sam-
ple and measures the intensity of the transmitted light. Such experiments have been
performed on so-called epitaxial graphene11 (Sadowski, Martinez, Potemski, Berger and de Heer, 2006)
and later on exfoliated graphene (Jiang, Henriksen, L. C. Tung, Schwartz, Han, Kim and Stormer, 2007).
When the monochromatic light is in resonance with a dipole-allowed transition from
the (partially) filled LL (λ, n) to the (partially) unoccupied LL (λ′, n ± 1), the light
is absorbed due to an electronic excitation between the two levels [see Fig. 2.4(a)].
Notice that, in a non-relativistic 2D electron gas, the only allowed dipolar transition
is that from the last occupied LL n to the first unoccupied one n+ 1. The transition
energy is h̄ωC , independently of n, and one therefore observes a single absorbtion line

11Epitaxial graphene is obtained from a thermal graphitisation process of an epitaxially grown SiC
crystal (Berger, Song, Li, Ogbazghi, Feng, Dai, Marchenkov, Conrad, First and de Heer, 2004)
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Fig. 2.4 LL spectroscopy in graphene (from Sadowski et al., 2006). (a) For a fixed magnetic

field (0.4 T), one observes resonances in the transmission spectrum as a function of the

irradiation energy. The resonances are associated with allowed dipolar transitions between

relativistic LLs. (b) These resonances are shifted as a function of the magnetic field. (c) If

one plots the resonance energies as a function of the square root of the magnetic field,
√

B,

a linear dependence is observed as one would expect for relativistic LLs.

(cyclotron resonance). In graphene, however, there are many more allowed transitions
due to the presence of two electronic bands, the conduction and the valence band, and
the transitions have the energies

∆n,ξ =
h̄v

lB

[

√

2(n+ 1) − ξ
√

2n
]

,

where ξ = + denotes an intraband and ξ = − an interband transition. One there-
fore obtains families of resonances the energy of which disperses as ∆n,ξ ∝

√
B, as

it has been observed in the experiments [see Fig. 2.4(c), where we show the results
from Sadowski et al. (Sadowski, Martinez, Potemski, Berger and de Heer, 2006)]. No-
tice that the dashed lines in Fig. 2.4(c) are fits with a single fitting parameter (the
Fermi velocity v), which matches well all experimental points for different values of n.

2.3.3 Level degeneracy

In the preceding subsection, we have learnt that the energy of 2D (non-)relativistic
charged particles is characterised by a quantum number n, which denotes the LLs (in
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addition to the band index λ in for relativistic particles). However, the quantum system
is yet underdetermined, as may be seen from the following dimensional argument.
The original Hamiltonians (2.7) and (2.8) are functions that depend on two pairs of
conjugate operators, x and px, and y and py, respectively, whereas when they are
expressed in terms of the gauge-invariant momentum Π or else the ladder operators a
and a† the Hamiltonians (2.15) and (2.20) depend only on a single pair of conjugate
operators. From the original models, one would therefore expect the quantum states to
be described by two quantum numbers (one for each spatial dimension). This is indeed
the case in the zero-field models (2.4), where the quantum states are characterised by
the two quantum numbers px and py, i.e. the components of the 2D momentum. For a
complete description of the quantum states, we must therefore search for a second pair
of conjugate operators, which necessarily commutes with the Hamiltonian and which
therefore gives rise to the level degeneracy of the LLs – in addition to the degeneracy
due to internal degrees of freedom such as the spin12 or, in the case of graphene, the
two-fold valley degeneracy.

In analogy with the gauge-invariant momentum, Π = p + eA(r), we consider the
same combination with the opposite relative sign,

Π̃ = p− eA(r), (2.26)

which we call pseudo-momentum to give a name to this operator. One may then express
the momentum operator p and the vector potential A(r) in terms of Π and Π̃,

p =
1

2
(Π + Π̃) and A(r) =

1

2e
(Π− Π̃). (2.27)

Notice that, in contrast to the gauge-invariant momentum, the pseudo-momentum
depends on the gauge and, therefore, does not represent a physical quantity.13 However,
the commutator between the two components of the pseudo-momentum turn out to
be gauge-invariant,

[

Π̃x, Π̃y

]

= i
h̄2

l2B
. (2.28)

This expression is calculated in the same manner as the commutator (2.11) between
Πx and Πy, as well as the mixed commutators between the gauge-invariant momentum
and the pseudo-momentum,

[

Πx, Π̃x

]

= 2ieh̄
∂Ax

∂x
,

[

Πy , Π̃y

]

= 2ieh̄
∂Ay

∂y
, (2.29)

[

Πx, Π̃y

]

= ieh̄

(

∂Ax

∂y
+
∂Ay

∂x

)

= −
[

Π̃x,Πy

]

.

These mixed commutators are unwanted quantities because they would induce unphys-
ical dynamics due to the fact that the components of the pseudo-momentum would

12The quantum states are naturally only degenerate if one neglects the Zeeman effect.
13We will nevertheless try to give a physical interpretation to this operator below, within a semi-

classical picture.
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not commute with the Hamiltonian, [Π̃x/y, H ] 6= 0. However, this embarrassing situ-
ation may be avoided by choosing the appropriate gauge, which turns out to be the
symmetric gauge

AS(r) =
B

2
(−y, x, 0), (2.30)

with the help of which all mixed commutators (2.29) vanish such that the components
of the pseudo-momentum also commute with the Hamiltonian.

Notice that there exists a second popular choice for the vector potential, namely
the Landau gauge, which we have already mentioned above,

AL(r) = B(−y, 0, 0), (2.31)

for which the last of the mixed commutators (2.29) would not vanish. This gauge
choice may even occur simpler: because the vector potential only depends on the
y-component of the position, the system remains then translation invariant in the x-
direction. Therefore, the associated momentum px is a good quantum number, which
may be used to label the quantum states in addition to the LL quantum number n.
For the Landau gauge, which is useful in the description of geometries with translation
invariance in the y-direction, the wave functions are calculated in Sec. (2.4.2). However,
the symmetric gauge, the wave functions of which are presented in Sec. (2.4.1), plays an
important role in two different aspects; first, it allows for a semi-classical interpretation
more easily than the Landau gauge, and second, the wave functions obtained from the
symmetric gauge happen to be the basic ingredient in the construction of trial wave
functions à la Laughlin for the description of the FQHE, as we will see in Chap. 4.

The pseudo-momentum, with its mutually conjugate components Π̃x and Π̃y, allows
us to introduce, in the same manner as for the gauge-invariant momentum Π, ladder
operators,

b =
lB√
2h̄

(

Π̃x + iΠ̃
)

and b† =
lB√
2h̄

(

Π̃x − iΠ̃
)

, (2.32)

which again satisfy the usual commutation relations [b, b†] = 1 and which, in the
symmetric gauge, commute with the ladder operators a and a†, [b, a(†)] = 0, and thus
with the Hamiltonian, [b(†), HB] = 0. One may then introduce a number operator b†b
associated with these ladder operators, the eigenstates of which satisfy the eigenvalue
equation

b†b|m〉 = m|m〉.
One thus obtains a second quantum number, an integer m ≥ 0, which is necessary to
describe, as expected from the above dimensional argument, the full quantum states in
addition to the LL quantum number n. The quantum states therefore become tensor
products of the two Hilbert vectors

|n,m〉 = |n〉 ⊗ |m〉 (2.33)

for non-relativistic particles. In the relativistic case, one has

ψλn,m = ψλn,m ⊗ |m〉 =
1√
2

(

|n− 1,m〉
λ|n,m〉

)

(2.34)
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Fig. 2.5 Cyclotron motion of an electron in a magnetic field around the guiding centre R.

The grey region indicates the quantum-mechanical uncertainty of the guiding-centre position

due to the non-commutativity (2.39) of its components.

for n 6= 0 and

ψn=0,m = ψn=0 ⊗ |m〉 =

(

0
|n = 0,m〉

)

(2.35)

for the zero-energy LL.

2.3.4 Semi-classical interpretation of the level degeneracy

How can we illustrate this somewhat mysterious pseudo-momentum introduced for-
mally above? Remember that, because the pseudo-momentum is a gauge-dependent
quantity, any physical interpretation needs to be handled with care. However, within
a semiclassical treatment, the symmetric gauge allows us to make a connection with
a classical constant of motion that one obtains from solving the classical equations of
motion for a massive electron in a magnetic field,

mbr̈ = −e(ṙ× B) ⇔
{

ẍ = −ωC ẏ

ÿ = ωC ẋ
(2.36)

which is nothing other than the electron’s acceleration due to the Lorentz force. These
equations may be integrated, and one then finds

ẋ = Πx

mb
= −ωC(y − Y )

ẏ =
Πy

mb
= ωC(x−X)







⇔







y = Y − Πx

eB

x = X +
Πy

eB

(2.37)

where R = (X,Y ) is an integration constant, which physically describes a constant
of motion. This quantity may easily be interpreted: it represents the centre of the
electronic cyclotron motion (see Fig. 2.5). Indeed, further integration of the equations
(2.37) yields the classical cyclotron motion

x(t) = X − r sin(ωCt+ φ) and y(t) = Y + r cos(ωCt+ φ),

where the phase φ is another constant of motion. The cyclotron motion itself is de-
scribed by the velocities (or else the gauge-invariant momenta) Πx/m and Πy/m.
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Whereas the energy depends on these velocities that determine the radius r of the cy-
clotron motion, it is completely independent of the position of its centre R, which we
call guiding centre from now on, as one would expect from the translational invariance
of the equations of motion (2.36).

In order to relate the guiding centre R to the pseudo-momentum Π̃, we use Eq.
(2.27) for the vector potential in the symmetric gauge,

eA(r) =
eB

2

(

−y
x

)

=
1

2
(Π − Π̃).

The postions x and y may then be expressed in terms of the momenta Π and Π̃,

y =
Π̃x

eB
− Πx

eB

x = − Π̃y

eB
+

Πy

eB
.

A comparison of these expresssions with Eq. (2.37) allows us to identify

X = − Π̃y

eB
and Y =

Π̃x

eB
. (2.38)

This means that, in the symmetric gauge, the components of the pseudo-momentum
are nothing other, apart from a factor to translate a momentum into a position, than
the the components of the guiding centre, which are naturally constants of motion.
In a quantum-mechanical treatment, these operators therefore necessarily commute
with the Hamiltonian, as we have already seen above. Furthermore, the commutation
relation (2.28) between the components of the pseudo-momentum, [Π̃x, Π̃y] = ih̄2/l2B
induces the commutation relation

[X,Y ] = il2B (2.39)

between the components of the guiding-centre operator. This means that there is
a Heisenberg uncertainty associated with the guiding-centre position of a quantum-
mechanical state – one cannot know its x- and y-components simultaneously, and the
guiding centre is, therefore, smeared out over a surface

∆X∆Y = 2πl2B (2.40)

(see grey region in Fig. 2.5).14 This minimal surface plays the same role as the surface
(action) h in phase space and therefore allows us to count the number of possible
quantum states of a given (macroscopic) surface A,

NB =
A

∆X∆Y
=

A
2πl2B

= nB ×A,

14Mathematicians speak of a non-commutative geometry in this context, and the charged 2D par-
ticle may be viewed as a pardigm of this concept.
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where we have introduced the flux density

nB =
1

2πl2B
=

B

h/e
, (2.41)

which is nothing other than the magnetic field measured in units of the flux quantum
h/e. Therefore, the number of quantum states in a LL equals the number of flux
quanta threading the sample surface A, and each LL is macroscopically degenerate.
We will show in a more quantitative manner than in the above argument based on the
Heisenberg inequality that the number of states per LL is indeed given by NB when
discussing, in the next section, the electronic wave functions in the symmetric and the
Landau gauges.

Similarly to the guiding-centre operator, we may introduce the cyclotron variable
η = (ηx, ηy), which determines the cyclotron motion and which fully describes the
dynamic properties. The cyclotron variable is perpendicular to the electron’s velocity
and may be expressed in terms of the gauge-invariant momentum Π,

ηx =
Πy

eB
and ηy = −Πx

eB
, (2.42)

as one sees from Eq. (2.37). The position of the electron is thus decomposed into its
guiding centre and its cyclotron variable, r = R + η. Also the components of the
cyclotron variable do not commute, and one finds with the help of Eq. (2.11)

[ηx, ηy] =
[Πx,Πy]

(eB)2
= −il2B = −[X,Y ]. (2.43)

Until now, we have only discussed a single particle and its possible quantum states.
Consider now N independent quantum-mechanical electrons at zero-temperature. In
the absence of a magnetic field, electrons in a metal, due to their fermionic nature
and the Pauli principle which prohibits double occupancy of a single quantum state,
fill all quantum states up to the Fermi energy, which depends thus on the number of
electrons itself. The situation is similar in the presence of a magnetic field: the electrons
preferentially occupy the lowest LLs, i.e. those of lowest energy. But once a LL is filled,
the remaining electrons are forced to populate higher LLs. In order to describe the LL
filling it is therefore useful to introduce the dimensionless ratio between the number
of electrons Nel = nel ×A and that of the flux quanta,

ν =
Nel

NB
=
nel

nB
=
hnel

eB
, (2.44)

which is called filling factor. Indeed the integer part, [ν], of the filling factor counts
the number of completely filled LLs. Notice that one may vary the filling factor either
by changing the particle number or by changing the magnetic field. At fixed particle
number, lowering the magnetic field corresponds to an increase of the filling factor.

2.4 Eigenstates

2.4.1 Wave functions in the symmetric gauge

The algebraic tools established above may be used calculate the electronic wave func-
tions, which are the space representations of the quantum states |n,m〉, φn,m(x, y) =
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〈x, y|n,m〉.15 Notice first that one may obtain all quantum state |n,m〉 from a single
state |n = 0,m = 0〉, with the help of

|n,m〉 =

(

a†
)n

√
n!

(

b†
)m

√
m!

|n = 0,m = 0〉, (2.45)

which is a generalisation of Eq. (2.18). Naturally, this equation translates into a dif-
ferential equation for the wave functions φn,m(x, y).

A state in the lowest LL (n = 0) is characterised by the condition (2.17)

a|n = 0,m〉 = 0, (2.46)

which needs to be translated into a differential equation. Remember from Eq. (2.12)
that a = (lB/

√
2h̄)(Πx − iΠy) and, by definition, Π = −ih̄∇ + eA(r) where we have

already represented the momentum as a differential operator in position representation,
p = −ih̄∇. One then finds

a = −i
√

2

[

lB
2

(∂x − i∂y) +
x− iy

4lB

]

,

where ∂x and ∂y are the components of the gradient ∇ = (∂x, ∂y), and one sees from
this expression that it is convenient to introduce complex coordinates to describe the
2D plane. We define z = x− iy, z∗ = x+ iy, ∂ = (∂x + i∂y)/2 and ∂̄ = (∂x − i∂y)/2.
The lowest LL condition (2.46) then becomes a differential equation,

(

z

4lB
+ lB ∂̄

)

φn=0(z, z
∗) = 0, (2.47)

which may easily be solved by the complex function

φn=0(z, z
∗) = f(z)e−|z|2/4l2B , (2.48)

where f(z) is an analytic function, i.e. ∂̄f(z) = 0, and |z|2 = zz∗. This means that
there is an additional degree of freedom because f(z) may be any analytic function. It
is not unexpected that this degree of freedom is associated with the second quantum
number m, as we will now discuss.

The ladder operators b and b† may be expressed in position representation in a
similar manner as a, and one obtains the space representation of the different ladder
operators,

a = −i
√

2

(

z

4lB
+ lB ∂̄

)

, a† = i
√

2

(

z∗

4lB
− lB∂

)

b = −i
√

2

(

z∗

4lB
+ lB∂

)

, b† = i
√

2

(

z

4lB
− lB ∂̄

)

. (2.49)

15 We limit the discussion to the non-relativistic case. The spinor wave functions for relativistic
electrons are then easily obtained with the help of Eqs. (2.34) and (2.35).
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In the same manner as for a state in the lowest LL, the condition for the reference
state with m = 0 is b|n,m = 0〉 = 0, which yields the differential equation

(

z∗ + 4l2B∂
)

φ′m=0(z, z
∗) = 0

with the solution
φ′m=0(z, z

∗) = g(z∗)e−|z|2/4l2B ,

in terms of an anti-analytic function g(z∗) with ∂g(z∗) = 0. The wave function
φn=0,m=0(z, z

∗) must therefore be the Gaussian with a prefactor that is both ana-
lytic and anti-analytic, i.e. a constant that is fixed by the normalisation. One finds

φn=0,m=0(z, z
∗) = 〈z, z∗|n = 0,m = 0〉 =

1
√

2πl2B
e−|z|2/4l2B , (2.50)

and a lowest-LL state with arbitrary m may then be obtained with the help of Eq.
(2.45),

φn=0,m(z, z∗) =
im

√
2m

√

2πl2Bm!

(

z

4lB
− lB ∂̄

)m

e−|z|2/4l2B

=
im

√

2πl2Bm!

(

z√
2lB

)m

e−|z|2/4l2B . (2.51)

The states within the lowest LL are therefore, apart from the Gaussian, given by the
usual polynomial basis states zm of analytic functions. In an arbitrary LL, the states
may be obtained in a similar manner, but they happen to be more complicated because
the differential operators (2.49) no longer act on the Gaussian only but also on the
polynomial functions. They may be expressed in terms on Laguerre polynomials.

To conclude the discussion about the wave functions in the symmetric gauge, we
calculate the average value of the guiding-centre operator in the state |n = 0,m〉. With
the help of Eqs. (2.32) and (2.38), one may express the components of the guiding-
centre operator in terms of the ladder operators b and b†,

X =
lB

i
√

2
(b† − b) and Y =

lB√
2
(b† + b), (2.52)

and the ladder operators act, in analogy with Eq. (2.16), on the states |n,m〉 as

b†|n,m〉 =
√
m+ 1|n,m+ 1〉 and b|n,m〉 =

√
m|n,m− 1〉.

The average value of the guiding-centre operator is therefore zero in the states |n,m〉,

〈R〉 ≡ 〈n = 0,m|R|n = 0,m〉 = 0,

but we have

〈|R|〉 =
〈

√

X2 + Y 2
〉

= lB

〈
√

2b†b+ 1
〉

= lB
√

2m+ 1. (2.53)

This means that the guiding centre is situated, in a quantum state |n,m〉, somewhere
on a circle of radius lB

√
2m+ 1 whereas its angle (or phase) is completely undeter-

mined.
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The symmetric gauge is the natural gauge to describe a sample in the form of

a disc. Consider the disc to have a radius Rmax (and a surface A = πR2
max). How

many quantum states may be accomodated within the circle? The quantum state
with maximal m quantum number, which we call M , has a radius lB

√
2M + 1, which

must naturally coincide with the radius Rmax of the disc. One therefore obtains A =
πl2B(2M + 1), and the number of states within the disc is then, in the thermodynamic
limit M ≫ 1,

M =
A

2πl2B
= nB ×A = NB, (2.54)

in agreement with the result (2.41) obtained from the argument based on the Heisen-
berg uncertainty relation.

2.4.2 Wave functions in the Landau gauge

If the sample geometry is rectangular, the Landau gauge (2.31), AL(r) = B(−y, 0, 0),
is more appropriate than the symmetric gauge to describe the physical system. As
already mentioned above, the momentum px = h̄k is a good quantum number due to
translational invariance in the x-direction. One may therefore use a plane-wave ansatz

ψn,k(x, y) =
eikx

√
L
χn,k(y),

for the wave functions. In this case, the Hamiltonian (2.7) becomes

HB
S =

(px − eBy)2

2m
+

p2
y

2m
=

p2
y

2m
+

1

2
mωC(y − y0)

2, (2.55)

where we have defined
y0 = kl2B. (2.56)

The Hamiltonian (2.55) is nothing other than the Hamiltonian of a one-dimensional
oscillator centred around the position y0, and the eigenstates are

χn,k(y) = Hn

(

y − y0
lB

)

e−(y−y0)
2/4l2B ,

in terms of Hermite polynomials Hn(x) (Cohen-Tannoudji, Diu and Laloë, 1973). The
coordinate y0 plays the role of the guiding centre component Y , the component X
being smeared over the whole sample length L, as it is dictated by the Heisenberg
uncertainty relation resulting from the commutation relation (2.39) [X,Y ] = il2B.

Using periodic boundary conditions k = m × 2π/L for the wave vector in the x-
direction, one may count the number of states in a rectangular surface of length L and
widthW (in the y-direction), similarly to the above arguments in the symmetric gauge.
Consider the sample to range from ymin = 0 to ymax = W , the first corresponding
via the above-mentioned condition (2.56) to the wave vector k = 0 and the latter to
a wave vector kmax = M × 2π/L. Two neighbouring quantum states are separated by
the distance ∆y = ∆kl2B = ∆m(2π/L)l2B = 2πl2B/L, and each state therefore occupies
a surface σ = ∆y×L = 2πl2B, which agrees with the result (2.40) obtained above with
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the help of the consideration based on the Heisenberg uncertainty relation. The total
number of states is, as in the symmetric gauge and the general argument leading to
Eq. (2.41),

M = NB = nB × LW = nB ×A,
i.e. the number of flux quanta threading the (rectangular) surface A = LW .



3

Integer Quantum Hall Effect

The quantum-mechanical treatment of the 2D electron in a perpendicular magnetic
field is the backbone for the understanding of the basic properties of the quantum
Hall effect. However, we need to relate the kinetic-energy quantisation to the resis-
tance quantisation, which is the essential feature of the IQHE. In the present chapter,
we discuss the transport properties of electrons in the IQHE, namely the somewhat
mysterious role that disorder plays in this type of transport. Remember from the in-
troduction that the Hall resistance is quantised with an astonishingly high precision
(10−9), such that it is now used as the standard of resistance [see Eq. (1.13)]. The
resistance quantisation in the IQHE therefore does reflect neither a particular disor-
der distribution nor a particular sample geometry. Nevertheless, disorder turns out to
play an essential role in the occurence of the IQHE, as we will see in this chapter.

We will first consider, in Sec. 3.1, the motion of a 2D electron in a perpendicular
magnetic field when also an external electrostatic potential is present, such as the one
generated by disorder or the confinement potential that defines the sample boundaries.
In Sec. 3.2, we then calculate the conductance of a single LL within a mesoscopic
picture and discuss the difference between a two-terminal and a six-terminal transport
measurement in Sec. 3.3. Furthermore, we discuss, in Sec. 3.4, the IQHE within a
percolation picture and present some scaling properties that characterise the plateau
transitions. We terminate this chapter with a short discussion of the pecularities of
the relativistic quantum Hall effect in graphene the understanding of which requires
essentially the same ingredients as the IQHE in non-relativistic quantum Hall systems.

3.1 Electronic Motion in an External Electrostatic Potential

We consider a system the length L of which is much larger than the width W (see Fig.
3.1). This may be modeled by a confinement potential Vconf(y) that only depends on
the y-direction, i.e. the system remains translation-invariant in the x-direction with
respect to this potential.1 In addition to the confinement, we consider a smoothly
varying electrostatic potential Vimp(x, y) that is caused by the impurities in the sam-
ple. This impurity potential breaks the translation invariance in the x-direction as
well as that in the y-direction, which is already broken by the confinement potential.

1Naturally, the system is also confined in the x-direction, but since we consider a sample with L ≫
W , the system appears as translation-invariant in the x-direction when one considers intermediate
length scales. The latter may be taken into account with the help of periodic boundary conditions
that discretise the wave vector in the x-direction, as we have seen in the preceding chapter within the
quantum-mechanical treatment of the 2D electron in the Landau gauge (see Sec. 2.4.2).
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Fig. 3.1 Potential landscape of an electrostatic potential in a sample. The metallic contacts

are described by the chemical potentials µL and µR for the left and right contacts, respectively.

We consider L ≫ W ≫ ξ ≫ lB, where ξ is the typical length scale for the variation of the

electrostatic potential. The sample is confined in the y-direction between ymax and ymin. The

thin lines indicate the equipotential lines. When approaching one of the sample edges, they

become parallel to the edge. The grey lines indicate the electronic motion with the guiding

centre moving along the equipotential lines. The electron turns clockwise around a summit

of the potential landscape, which is caused e.g. by a negatively charged impurity (−), and

counter-clockwise around a valley (+). At the sample edges, the equipotential lines due to

the confinement potential connect the two contacts on the left and on the right hand side.

The Hamiltonian of a 2D particle in a perpendicular magnetic field then needs to be
completed by a potential term

V (r) = Vconf(y) + Vimp(x, y), (3.1)

which creates a potential landscape that is schematically depicted in Fig. 3.1.

3.1.1 Semi-classical treatment

In a first step, we consider a potential V (r) that varies smoothly on the scale set by
the magnetic length, i.e. ξ ≫ lB, where ξ describes the characteristic length scale
for the variation of V (r). Notice first that the external electrostatic potential lifts
the LL degeneracy because the Hamiltonian H = HB + V (r = R + η) no longer
commutes with the guiding-centre operator R, in contrast to the “free” Hamiltonian
HB, [H,R] = [V,R] 6= 0. Physically, this is not unexpected: the guiding centre is a
constant of motion due to translation invariance, i.e. it does not matter whether the
electron performs its cyclotron motion around a point R1 or R2 in the 2D plane as
long as the cyclotron radius is the same. However, the electrostatic potential V (r)
breaks this translation invariance and thus lifts the degeneracy associated with the
guiding centre.

In the case where the electrostatic potential varies smoothly on a length scale set by
the magnetic length and does not generate LL mixing, i.e. when |∇V | ≪ h̄ωC/lB, we
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may approximate the argument r in the potential (3.1) by the guiding-centre variable
R,2

V (r) ≃ V (R). (3.2)

Notice that this approximation may seem unappropriate when we consider the con-
finement potential in the y-direction which may vary abruptly when approaching the
sample edges. The confinement potential with translation invariance in the x-direction
will be discussed separately in the following subsection.

As a consequence of the non-commutativity of the potential term V (R) with the
guiding-centre operator, the latter quantity acquires dynamics, as may be seen from
the Heisenberg equations of motion

ih̄Ẋ = [X,H ] = [X,V (R)] =
∂V

∂Y
[X,Y ] = il2B

∂V

∂Y

ih̄Ẏ = [Y, V (R)] = −il2B
∂V

∂X
, (3.3)

i.e. Ṙ ⊥ ∇V . Here, we have used the commutation relation (2.39) for the guiding-centre
components and Eq. (2.10). The Heisenberg equations of motion are particularly useful
in the discussion of the semi-classical limit because the averaged equations satisfy the
classical equations of motion,

〈Ṙ〉 ⊥ ∇V, (3.4)

which means that, within the semi-classical picture, the guiding centres move along
the equipotential lines of the smoothly varying external electrostatic potential. This
feature, which is also called the Hall drift,

vD =
E× B

B2
= 〈Ṙ〉 =

−∇V × B

eB2
, (3.5)

in terms of the (local) electric field E = −∇V/e, is depicted in Fig. 3.1 by the grey
lines.

In the bulk, the potential landscape is created by the charged impurities in the
sample, and the electrons turn clockwise on an equipotential line around a summit
that is caused by a negatively charged impurity and counter-clockwise around a valley
created by a positively charged impurity. If the equipotential lines are closed, as it
is the case for most of the equipotential lines in a potential landscape,3 an electron
cannot move from one point to another one over a macroscopic distance, e.g. from

2This approximation may be viewed as the first term of an expansion of the electrostatic potential
in the coherent (or vortex) state basis, where the states are maximally localised around the guiding-
centre position R (Champel and Florens, 2007).

3In order to illustrate this point, consider a hiking tour in the mountains, e.g. around Les Houches
in the French Alps. To go from one point to another one at the same height, one usual needs go
downhill as well as uphill. It is very rare to be able to stay on the same height unless one wants to
turn in circles that are just the closed countour lines which correspond to closed equipotential lines in
our potential landscape. For those who participated at the Les Houches session which was outsourced
to Singapore, where there are no mountains and where the whether is anyway too hot for hiking, just
look at a hiking map of some mountainous region. Then search for countour lines that connect one
border of the map to the opposite border. It turns out to be very hard to find such lines as compared
to a large number of closed countour lines.
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one contact to the other one. An electron moving on a closed equipotential line can
therefore not contribute to the electronic transport, and the electron is thus localised.
Notice that this type of localisation it different from other popular types. Anderson
localisation in 2D, e.g., is due to quantum interferences of the electronic wave functions
(Abrahams, Anderson, Licciardello and Ramakrishnan, 1979). Here, however, the lo-
calisation is a purely classical effect. The high-field localisation is also different from the
interaction-driven Mott insulator, where the electrons freeze out in order to minimise
the mutual Coulomb repulsion between the electrons.

At the edge, the equipotential lines reflect the confinement potential, which is zero
in the bulk but rapidly increases when approaching the sample edge at ymin and ymax

(see Fig. 3.1). In this case, the equipotential lines are open and therefore connect the
two different electronic contacts. The electrons occupying quantum states at these
equipotential lines then contribute to the electronic transport, in contrast to those
on closed equipotential lines in the bulk. These quantum states are called extended
states,4 as opposed to the localised states discussed above. The difference between
localised and extended states turns out to be essential in the understanding of the
IQHE, as we will see below (Sec. 3.4).

3.1.2 Electrostatic potential with translation invariance in the
x-direction

Although the above semi-classical considerations yield the correct physical picture of
localised and extended states, it is based on the assumption that the electrostatic
potential varies smoothly on the scale set by the magnetic length, such that we may
replace the electron’s position by that of its guiding centre [Eq. (3.2)]. This assumption
is, however, problematic in view of the confinement potential which varies strongly at
the sample edges, i.e. in the vicinity of ymin and ymax. We will therefore treat the
y-dependent confinement potential in a quantum treatment. Naturally, the appropri-
ate gauge for the quantum-mechanical treatment is the Landau gauge (2.31), which
respects the translation invariance in the x-direction, and the Hamiltonian (2.55) be-
comes

H =
p2

y

2m
+

1

2
mωC(y − y0)

2 + Vconf(y). (3.6)

Remember that for a fixed wave vector k in the x-direction, the position around which
the one-dimensional harmonic oscillator is centred is fixed by Eq. (2.56), y0 = kl2B. We
may therefore expand the confinement potential, even in the case of a strong variation,
around this position,

V (y) ≃ V (y0 = kl2B) − eE(y0)(y − y0) + O
(

∂2V

∂y2

)

,

where the local electric field is given in terms of the first derivative of the potential at
y0,

eE(y0) = − ∂Vconf

∂y

∣

∣

∣

∣

y0

.

4In the semi-classical picture the extended states are also called skipping orbits.
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This expansion yields the Hamiltonian

H =
p2

y

2m
+

1

2
mωC(y − y′0)

2 + Vconf(y0) −
1

2
mv2

D(y0),

where the local drift velocity reads vD = E(y0)/B and the position of the harmonic
oscillator is shifted, y0 → y′0 = y0+eE(y0)/mω

2
C . Notice that the last term is quadratic

in the electric field E(y0) and therefore a second-order term in the expansion of the
confinement potential. We neglect this term in the following calculations. The final
Hamiltonian then reads

H =
p2

y

2m
+

1

2
mωC(y − y′0)

2 + Vconf(y
′
0), (3.7)

where we have replaced the argument y0 by the shifted harmonic-oscillator position
y′0, which is valid at first order in the expansion of the confinement potential. One
therefore obtains the energy spectrum

ǫn,y0
= h̄ωC

(

n+
1

2

)

+ V (y0), (3.8)

where we have omitted the prime at the shifted harmonic-oscillator position to simplify
the notation. One therefore obtains the same LL spectrum as in the absence of a
confinement potential, apart from an energy shift that is determined by the value of
the confinement potential at the harmonic-oscillator position, which may indeed vary
strongly. This position y0 plays the role of the guiding-centre position, as we have
already mentioned in the last chapter, where we have calculated the electronic wave
functions in the Landau gauge (2.4.2). One thus obtains a result that is consistent
with the semi-classical treatment presented above.

3.2 Conductance of a Single Landau Level

We now calculate the conductance of a completely filled LL for the geometry depicted
in Fig. 3.1, i.e. when all quantum states (described within the Landau gauge) of the
n-th LL are occupied. In a first step, we calculate the current of the n-th LL, which
flows from the left to the right contact, with the help of the formula

Ix
n = − e

L

∑

k

〈n, k|vx|n, k〉, (3.9)

i.e. as the sum over all NB quantum channels labelled by the wave vector k = 2πm/L,
with the velocity

〈n, k|vx|n, k〉 =
1

h̄

∂ǫn,k

∂k
=

L

2πh̄

∆ǫn,m

∆m
,

in terms of the dispersion relation (3.8).5 Notice that the velocity in the y-direction
is zero because the energy does not disperse as a function of the y-component of the

5This relation may be obtained from the Heisenberg equations of motion, ih̄ẋ = [x,H] =
(∂H/∂px)[x, px] = i∂H/∂k, where we have used Eq. (2.10) and px = h̄k. One therefore obtains
the operator equation

ẋ =
1

h̄

∂H

∂k
,

which we evaluate in the state |n, k〉. In the last step we have used the periodic boundary conditions.



40 Integer Quantum Hall Effect

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

ymax
n+1

ν = n ν 
= 

n−
1(b)

y

x
ν = n+1

yymaxymax
n n−1

n+1

n

n−1

(a)

µ max

Fig. 3.2 Edge states. (a) The LLs are bent upwards when approaching the sample edge,

which may be modeled by an increasing confinement potential. One may associate with each

LL n a maximal value yn
max of the y-component where the LL crosses the chemical potential

µmax. (b) At each position yn
max, the filling factor decreases by a jump of 1. The n-th edge

state is associated with the jump at yn
max and the gradient of the confinement potential

imposes a direction to the Hall drift of this state (chirality). This chirality is the same for all

edge states at the same edge.

wave vector. The above expression is readily evaluated with ∆m = 1, and one obtains

〈n, k|vx|n, k〉 =
L

h
(ǫn,m+1 − ǫn,m) .

With the help of this expression, the current (3.9) of the n-th LL becomes

In = − e

L

∑

m

L

h
(ǫn,m+1 − ǫn,m) ,

and one notices that all terms in the sum cancel apart from the boundary terms ǫn,mmin

and ǫn,mmin
, which correspond to the chemical potentials µmin and µmax, respectively.

The difference between these two chemical potentials may be described in terms of the
(Hall) voltage V between the upper and the lower edge, µmax − µmin = −eV . One
thus obtains the final result

In = − e

h
(µmax − µmin) =

e2

h
V. (3.10)

This means that each LL contributes one quantum of conductance Gn = e2/h to
the electronic transport and n completely filled LLs contribute a conductance6

G =
n−1
∑

n′=0

Gn′ = n
e2

h
. (3.11)

Notice furthermore that this is a particular example of the Landauer-Büttiker formula
of quantum transport

6Notice that, because the lowest LL is labelled by n′ = 0, the last one has the index n− 1 in the
case of n completely filled levels.
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Gn =

e2

h
Tn

through a conduction channel n, where Tn is the transmission coefficient of the channel
(Büttiker, Imry, Landauer and Pinhas, 1985; Datta, 1995). Because Tn + Rn = 1, in
terms of the reflexion coefficient, the above result (3.10) indicates that each filled LL
may be viewed as a conduction channel with perfect transmission Tn = 1, i.e. where
an injected electron is not reflected or backscattered.

3.2.1 Edge states

The astonishing feature of perfect transmission, which is independent of the length
L (or more precisely of the aspect ratio L/W , see the discussion in Sec. 1.1.2 of the
introduction) or the particular geometry of the sample, may be understood from the
edge-state picture which we have introduced above (see Fig. 3.2). Consider the upper
edge, without loss of generality. The current-transporting edge state of the n-th LL is
the one situated at yn

max, where the n-th LL crosses the Fermi energy and where the
filling factor jumps from ν = n+ 1 to n.7 Due to the upward bent of the confinement
potential a particular direction is imposed on the electronic motion, which is nothing
other than the Hall drift (see Fig. 3.1). This uni-directional motion is also called
chirality of the edge state. Notice that this is the same chirality which one expects
from the semi-classical expression (3.5) for the drift velocity. The chirality is the same
for all edge states n at the same sample edge where the gradient of the confinement
potential does not change its direction. Therefore, even if an electron is scattered from
one channel n to another one n′ at the same edge it does not change its direction of
motion, and the electron cannot be backscattered unless it is scattered to the opposite
edge with inverse chirality. However, in a usual quantum Hall system, the opposite
edges are separated by a macroscopic distance ∼W , and backscattering processes are
therefore strongly (exponentially) suppressed in the ratio lB/W between the magnetic
length, which determines the spatial extension of quantum-mechanical state, and the
macroscopic sample width W . Notice that the quantum Hall system at integer filling
factors ν = n is therefore a very unusual electron liquid: it is indeed a bulk insulator
with perfectly conducting (non-dissipative) edges.

3.3 Two-terminal versus Six-Terminal Measurement

3.3.1 Two-terminal measurement

In the preceding section Sec. (3.2), we have calculated the conductance of a single
LL (and n filled LLs) within a so-called two-terminal measurement, where we inject a
current in the left contact with chemical potential µL and collect the outcoming current
at the right contact with µR. As a consequence of Eq. (3.10), this current builds up a

7Strictly speaking the filling factor does not jump not abruptly when one takes interactions between
the electrons into account. In this case, two incompressible strips, of ν = n+1 and ν = n are separated
by a compressible strip of finite width. The picture of chiral electron transport remains, however,
essentially the same when considering such compressible regions.
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Fig. 3.3 Two-terminal measurement. The current is driven through the sample via the left

and the right contacts, where one also measures the voltage drop and thus a resistance. The

upper edge is in thermodynamic equilibrium with the left contact (blue), whereas the lower

one is in equilibrium with the right contact (red). The chemical potential drops abruptly

when the upper edge reaches the right contact, and when the lower edge reaches the left

contact. Dissipation occurs in these hot spots (red dots). The measured resistance between

the two contacts thus equals the Hall resistance.

voltage V between the upper and the lower sample edge. This voltage drop is therefore
associated with a Hall resistance, which is the inverse of the conductance G = ne2/h,

RH = G−1 =
h

e2
1

n
, (3.12)

and which coincides with the contact (or interface) resistance of a mesoscopic system
(Datta, 1995). However, the voltage drop VL between the left and the right contact is
given by the difference of the chemical potentials in the contacts, µR − µL = −eVL,
and the associated longitudinal resistance VL/I is non-zero, in contrast to what we
have seen in the introduction. This is due to the fact that the difference between
the longitudinal and the Hall resistance is not clearly defined in such a two-terminal
measurement.

This feature may be understood from Fig. 3.3. Indeed, due to the above-mentioned
absence of backscattering, the chemical potential is constant along a sample edge, but
there is a potential difference between the two edges. This means that the chemical
potential must change somewhere along the edge. Consider the upper edge that is fed
with electrons by the left contact, i.e. the upper edge is in thermodynamic equilibrium
with the left contact and the chemical potentials therefore coincide, µL = µmax (see
Fig.3.3). Now, when the upper edge touches the right contact which is at a different
chemical potential µR, the chemical potential of the upper edge must rapidly relax
to be in equilibrium with the right contact. In the same manner, the lower edge
is in equilibrium with the right contact, µmin = µR, and abruptly changes when
touching the left contact. The rapid change in the chemical potential is associated with
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Fig. 3.4 (a) Six-terminal measurement. The current I is driven through the sample via

the contacts 1 and 4. Between these two contacts the chemical potential on the upper edge

µL (blue) does not vary because the electrons do not leak out or in at the contacts 2 and

3, where one measures the longitudinal resistance. In the same manner, the chemical po-

tential µR (red) remains constant between the contacts 5 and 6 on the lower edge. The

longitudinal resistance measured between 2 and 3 as well as between 5 and 6 is therefore

RL = (µ2 − µ3)/eI = (µ5 − µ6)/eI = 0. The Hall resistance is determined by the potential

difference between the two edges and thus measured, e.g. between the contacts 5 and 3, where

µ5 − µ3 = µR − µL, and thus RH = (µ3 − µ5)/eI . (b) Four-terminal measurement in the

van-der-Pauw geometry. In a Hall-resistance measurement, one drives a current through the

sample via the contacts 1 and 3 (connected by the continuous blue line) and measures the Hall

resistance via the contacts 2 and 4 (dashed blue line). In a measurement of the longitudinal

resistance, the current is driven through the sample via the contacts 1 and 4 (continuous red

line) and one measures a resistance between the contacts 2 and 3 (connected by the dashed

red line).

a dissipation of energy (at so-called hot spots) that has been observed experimentally
(Klaß, Dietsche, v. Klitzing and Ploog, 1991). In this experiment, the sample was put
in liquid helium and the heating at the hot spots caused a local vaporisation of the
helium observable in form of a fountain of gas bubbles.

Due to the equivalence of the chemical potentials µL = µmax and µmin = µR, the
voltage drops V , between the upper and the lower edge, and VL between the current
contacts are equal, V = VL. An unexpected consequence of this equation is that in a
resistance measurement between the two contacts, in the two-terminal configuration,
the two-terminal resistance equals the Hall resistance,

RR−L = RH =
h

e2
1

n
, (3.13)

and not the (vanishing) longitudinal resistance, when the bulk is insulating (at ν = n).
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3.3.2 Six-terminal measurement

A more sophisticated geometry that allows for the simulaneous measurement of a
well-defined longitudinal and Hall resistance is the six-terminal geometry, with two
additional contacts at the upper and two at the lower edge [see Fig. 3.4(a)]. These
additional contacts (2 and 3 at the upper and 5 and 6 at the lower edge, the left
and the right contacts being labelled by 1 and 4, respectively) are used to measure a
voltage, i.e. they have ideally an infinitely high internal resistance to prevent electrons
to leak out of or into the sample. The chemical potential therefore remains constant
at the upper edge µL = µ2 = µ3, as well as that at the lower edge µR = µ5 = µ6,
and one measures a zero-resistance, RL = (µ2 − µ3)/eI = (µ5 − µ6)/eI = 0, as one
expects from the calculation of the conductance through n LLs (see Sec. 3.11), which
is entirely transverse. The conductance matrix is thus off-diagonal, as well as the
resistance matrix,

G =

(

0 n e2

h

−n e2

h 0

)

and R =

(

0 − h
e2

1
n

h
e2

1
n 0

)

, (3.14)

and one precisely measures the diagonal elements of the resistance matrix, the lon-
gitudinal resistance, between the contacs 3 and 2 (or 6 and 5). The off-diagonal el-
ements, i.e. the Hall resistance, may e.g. be measured between the contacts 5 and
3 [as shown in Fig. 3.4(a)], and one measures then the result RH = G−1

n = h/e2n
obtained from the calculation presented in Sec. 3.11 because of the voltage drop
V = (µL − µR)/e = (µ3 − µ3)/e between the upper and the lower edge.

Finally we mention that there exists an intermediate geometry that consists of four
terminals (van-der-Pauw geometry), where the resistance measurements are equally
well defined [Fig. 3.4(b)]. If one labels the contacts from 1 to 4 in a clockwise manner,
one may measure a Hall resistance between the contacts 2 and 3 while driving a
current through the sample by the contacts 1 and 3 [blue lines in Fig. 3.4(b)]. In this
case, one may use the clear topological definition mentioned at the beginning of the
introduction. If one connects the contacts 2 and 3 by an imaginary line through the
sample (dashed blue line) it necessarily crosses the imaginary line (continuous blue)
which connects the current contacts 1 and 3 through the sample. This is precisely the
topological definition of a Hall-resistance measurement.

Similarly, one may measure the longitudinal resistance between the contacts 2
and 3 if one drives a current through the sample via the contacts 1 and 4. In this
case, the imaginary line (dashed red) which connects the contacts 2 and 3 where one
measures a resistance does not need to cross the line (continuous red) between the
contacts 1 and 4 at which one injects and collects the current, respectively. As we have
already mentioned at the beginning of the introduction, this defines topologically a
measurement of the longitudinal resistance.

These considerations show that a resistance measurement, although it does not
depend on the microscopic details of the sample, depends nevertheless on the geometry
in which the contacts are placed at the sample (Büttiker, 1988). This aspect is often
not sufficiently appreciated in the literature, namely the fact that one measures, in a
two-terminal geometry, a Hall resistance between the contacts that are used to inject
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Fig. 3.5 Quantum Hall effect. The (impurity-broadened) density of states is shown in the

first line for increasing fillings (a) - (c) described by the Fermi energy EF . The second line

represents the impurity-potential landscape the valleys of which become successively filled

with electrons when increasing the filling factor, i.e. when lowering the magnetic field at fixed

particle number. The third line shows the corresponding Hall (blue) and the longitudinal

(red) resistance measured in a six-terminal geometry, as a function of the magnetic field. The

first figure in column (c) indicates that the bulk extended states are in the centre of the DOS

peaks, whereas the localised states are in the tails.

and collect the current and not a longitudinal resistance, as one may have expected
naively, when the system is in the IQHE condition.

3.4 The Integer Quantum Hall Effect and Percolation

Until now we have shown that the Hall resistance is quantised [Eq. (3.12)] when n
LLs are completely filled, i.e. when the filling factor is exactly ν = n. However, we
have not yet explained the occurence of plateaus in the Hall resistance, i.e. a Hall
resistance that remains constant even if one varies the filling factor, e.g. by sweeping
the magnetic field, around ν = n.8 In order to explain the constance of the Hall
resistance over a rather large interval of magnetic field around ν = n, we need to take
into account the semi-classical localisation of additional electrons (or holes) described

8Strictly speaking, we have not gained anything because the quantum treatment allows us only
to determine the Hall resistance at certain points of the Hall curve, those at the magnetic fields
corresponding to ν = hnel/eB = n. If we substitute the filling factor in Eq. (3.12), we see immediately
that RH = h/e2ν = B/enel, i.e. one retrieves the classical result for the Hall resistance.
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in Sec. 3.1. This is shown in Fig. 3.5, where we represent the filling of the LLs (first
line), the potential landscape of the last partially-filled level (second line) and the
resistances as a function of the magnetic field, measured in a six-terminal geometry
(third line). We start with the situation of n completely filled LLs [column (a) of
Fig. 3.5], which we have extensively discussed above: the LL n (and its potential
landscape) is unoccupied.9 In a six-terminal measurement, one therfore measures the
Hall resistance RH = h/e2n and a zero longitudinal resistance, as we have seen in Eq.
(3.14).

In column (b) of Fig. 3.5, we represent the situation where the LL n gets mod-
erately filled by electrons when the magnetic field B is decreased. These electrons in
n populate preferentially the valleys of the potential landscape, or more precisely the
closed equipotential lines that enclose these valleys. The electrons in the LL n are
thus (classically) localised somewhere in the bulk and do not affect the global trans-
port characteristics, measured by the resistances, because they are not probed by the
sample contacts. Therefore, the Hall resistance remains unaltered and the longitudinal
resistance remains zero despite the change of the magnetic field. This is the origin of
the plateau in the Hall resistance.

If one continues to lower the magnetic field, the regions of the potential landscape
in the LL n occupied by electrons become larger, and they are eventually enclosed by
equipotential lines that pass through the bulk and that connect the opposite edges.
In this case, an electron injected at the left contact and travelling a certain distance
at the upper edge may jump into the state associated with this equipotential line and
thus reach the lower edge. Due to its chirality, the electron is then backscattered to
the left contact, which causes an increase in the longitudinal resistance. Indeed, if one
measures the resistance between the two contacts at the lower edge, a potential drop is
caused by the electron that leaks in from this equipotential connecting the upper and
the lower edge. It is this potential drop that causes a non-zero longitudinal resistance.
At the same moment the Hall resistance is no longer quantised and jumps to the next
(lower) plateau, a situation that is called plateau transition. This situation of electron-
filled equipotential lines connecting opposite edges, which are thus extended states [see
first line of Fig. 3.5(c)] as opposed to the bulk localised states, arises when the LL n
is approximately half-filled. Notice that these extended states, which are found in the
centre of the DOS peaks [see upper part of Fig. 3.5(c)], are bulk states in contrast to
the above-mentioned edge states, which are naturally also extended

The clean jump in the Hall resistance at the plateau transition accompanied by a
peak in the longitudinal one is only visible in the six- (or four-)terminal measurement.
As we have argued in Sec. 3.3.2, there is no clear cut between the longitudinal and
the Hall resistivity in the two-terminal configuration, where the resistance measured
between the current contacts is indeed quantised in the IQHE. At the plateau tran-
sition, however, the chemical potential at the edges is no longer constant because of
backscattered electrons and the resistance is no longer quantised. One observes indeed
the resistance peak associated with the longitudinal resistance in the six- or four-

9Remember that due to the label 0 for the lowest LL, all LLs with n′ = 0, ..., n − 1 are the
completely filled and the LL n is then the lowest unoccupied level.
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Fig. 3.6 STS measurements by Hashimoto et al., 2008, on a 2D electron system on a n-InSb

surface. The figures (a) - (g) show the local DOS at various sample voltages, around the peak

obtained from a dI/dV measurement (h). Figure (i) shows a calculated characteristic LDOS,

and figure (j) an STS result on a larger scale.

terminal configuration. As a consequence, one measures, at the plateau transition, the
superposition of the Hall and the longitudinal resistances.

If one increases even more the filling of the LL n, the same arguments apply but
now in terms of hole states. The Hall resistance is quantised as RH = h/e2(n + 1),
and the holes (i.e. the lacking electrons with respect to n + 1 completely filled LLs)
get localised in states at closed equipotential lines around the potential summits. As
a consequence, the longitudinal resistance drops to zero again.

3.4.1 Extended and localised bulk states in an optical measurement

The physical picture presented above, in terms of localised and extended bulk states,
has recently been confirmed in scanning-tunneling spectroscopy (STS) of a 2D elec-
tron system that was prepared on an n-InSb surface instead of the more common
GaAs/AlGaAs heterostructure (Hashimoto, Sohrmann, Wiebe, Inaoka, Meier, Hirayama, Römer, Wiesendanger and
Its advantage consists of its accessibility by an “optical” (surface) measurement that
cannot be performed if the 2D electron gas is buried deep in a semiconductor het-
erostructure. In an STS measurement one scans the sample and thus measures the
local density of states at a certain energy that can be tuned via the voltage between
the tip of the electron microscope and the sample. When measuring the differential
conductance dI/dV , which is proportional to the DOS, one observes a peak that cor-
responds to the centre of a LL [Fig. 3.6(h)] where the extended states are capable
of transporting a current between the different electric contacts, as mentioned above.
Whereas the quantum states at energies corresponding to closed equipotential lines of
the impurity landscape are clearly visible as closed orbits in Fig. 3.6(a),(b) and (f),(g),
the states in the vicinity of the peak are more and more extended, as shown by the
spaghetti-like lines in Figs. 3.6(c),(d) and (e), as one would expect from the arguments
presented above.
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3.4.2 Plateau transitions and scaling laws

The physical picture presented above suggests that the plateau transition in the Hall
resistance is related to a percolation transition, where initially separated electron-
filled valleys start to percolate between the opposite sample edges beyond a certain
threshold of the filling. Because of the second-order character of a percolation tran-
sition, this scenario suggests that the plateau transition is a second-order quantum
phase transition described by universal scaling laws, where the control parameter is
just the magnetic field B (Sondhi, Girvin, Carini and Shahar, 1997; Sachdev, 1999).
We finish this chapter on the IQHE with a brief overview over these scaling laws, and
refer the interested reader to the literature (Sondhi, Girvin, Carini and Shahar, 1997;
Sachdev, 1999) and the class given by G. Batrouni at the same Singapore session of
Les Houches Summer School 2009.10

The phase transition occurs at the critical magnetic field Bc and is characterised
by an algebraically diverging correlation length

ξ ∼ |B −Bc|−ν
, (3.15)

where ν is called the critical exponent.11 In the same manner, the temporal fluctuations
are described by a correlation “length” ξτ that is related to the spatial correlation
length ξ,

ξτ ∼ ξz ∼ |B −Bc|−zν , (3.16)

where z is called dynamical critical exponent. It is roughly a measure of the anisotropy
between the spatial and temporal fluctuations, which is often encountered in non-
relativistic condensed-matter systems.12

At the phase transition Bc, the longitudinal and transverse resistivities ρL/H are
described in terms of universal functions that are functions of the ratio τ/ξτ between
the (imaginary) time τ , which is proportional to the inverse temperature, h̄/τ = kBT
(Sondhi, Girvin, Carini and Shahar, 1997; Sachdev, 1999) and the temporal correla-
tion length ξτ ,

ρL/H = fL/H

(

τ

ξτ

)

= fL/H

(

∆Bzν

T

)

, (3.17)

where we have defined ∆B ≡ |B − Bc|. In the case of an AC (alternating current)
measurement at frequency ω, another dimensionless quantity, namely the ratio between
the frequency and the temperature, h̄ω/kBT , needs to be taken into account such that
the universal function reads

ρAC
L/H = fL/H

(

τ

ξτ
,
h̄ω

kBT

)

.

10The lecture notes for this class are availabel on the School’s program webpage:
http://www.ntu.edu.sg/ias/upcomingevents/LHSOPS09/Pages/programme.aspx

11Although we use the same Greek letter ν for the critical exponent, it must not be confunded with
the filling factor, which plays no role in this subsection.

12Notice that in relativity, time is considered as the “fourth” dimension, and Lorentz invariance
would require that spatial and temporal fluctuations be equivalent, i.e. z = 1.

http://www.ntu.edu.sg/ias/upcomingevents/LHSOPS09/Pages/programme.aspx
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Fig. 3.7 Experiment by Wei et al., 1988. The width of the transition ∆B and of the

derivative of the Hall resisitivity ∂ρxy/∂B, measured as a function of temperature, reveals a

scaling law with an exponent 1/zν = 0.42±0.04, for the transition between the filling factors

1 → 2 (N = 0 ↓), 2 → 3 (N = 1 ↑) and 3 → 4 (N = 1 ↓).

However, we do not consider an alternating current here. Equation (3.17) then yields
the scaling of the width of the peak in the longitudinal resistance (or else the plateau
transition)

∆B ∼ T 1/zν . (3.18)

A measurement of this width by Wei et al. (Wei, Tsui, Paalanen and Pruisken, 1988)
has confirmed such critical behaviour with an exponent 1/zν = 0.42 ± 0.04 (see Fig.
3.7).

Furthermore, one may distinguish between the two exponents ν and z within a
measurement of the plateau-transition width as a function of the electric field E via
current fluctuations. One may identify the energy fluctuation eEξ at the correlation
length ξ with the energy scale h̄/ξτ ∼ h̄/ξz set by the temporal fluctuation ξτ , which
yields E ∼ ξ−(1+z) ∼ ∆Bν(1+z), and thus

∆B ∼ E1/ν(1+z). (3.19)

Other measurements by Wei et al. (Wei, Engel and Tsui, 1994) have shown that these
types of fluctuations yield z ≃ 1, i.e. ν ≃ 2.3. The precision of the measured critical ex-
ponent has since been improved – more recent experiments (Li, Csathy, Tsui, Pfeiffer and West, 2005;
Li, Vicente, Xia, Pan, Tsui, Pfeiffer and West, 2009) have revealed ν = 2.38 ± 0.06.

Theoretically one knows that the critical exponent for classical 2D percolation is
νclass = 4/3 and thus much smaller than the measured one. This discrepancy is due
to the quantum nature of the percolation in quantum Hall systems. Indeed, quantum-
mechanical tunneling and the typical extension ∼ lB of the wave functions associ-
ated with the equipotential lines enhance percolation, i.e. the electron puddles in the
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Fig. 3.8 (a) Mass confinement for relativistic Landau levels. Whereas the electron-like

LLs (λ = +) are bent upwards when approaching the sample edge (ymax), the hole-like LLs

(λ = −) are bent downwards. The fate of the n = 0 LL depends on the valley (parity anomaly)

– in one valley (K), the level energy decreases, whereas it increases in the other valley (K′).

(b) Filling of the bulk Landau levels at ν = 0. All electron-like LLs (λ = +) are unoccupied

whereas all hole-like LLs (λ = −) are completely filled. The n = 0 LL is altogether half-filled.

potential valleys may percolate before they touch each other in the classical sense.
A model that takes into account this effect has been proposed by Chalker and Cod-
dington (Chalker and Coddington, 1988), though with simplifying assumptions for the
puddle geometry,13 and one obtains a critical exponent ν = 2.5 ± 0.5 from numeri-
cal studies of this model (Chalker and Coddington, 1988; Huckestein, 1995), in quite a
good agreement with the experimental data (Wei, Tsui, Paalanen and Pruisken, 1988;
Wei, Engel and Tsui, 1994).

In spite of the good agreement with experimental findings, these theoretical results
need to be handled with care – indeed, analytical calculations have shown that the
dynamical exponent should be exactly z = 2 for non-interacting electrons, whereas the
measured value z ≃ 1 is obtained when interactions are taken into account on the level
of the Hartree-Fock approximation (Huckestein and Backhaus, 1999). Furtherrmore,
very recent numerical calculations within the Chalker-Coddington model have shown
that the accurate value of the critical exponent is slightly larger (ν ≃ 2.59) than the
measured one when interactions are not taken into account (Slevin and Ohtsuki, 2009).

3.5 Relativistic Quantum Hall Effect in Graphene

We finish this chapter on the IQHE with a short presentation of the relativistic quan-
tum Hall effect (RQHE) in graphene, which is understandable in the same framework
of LL quantisation and (semi-classical) one-particle localisation as the IQHE in a non-
relativistic 2D electron system. Indeed, the above arguments also apply to relativistic
electrons in graphene, but we need to take into account the two different carrier types,

13Notice, however, that due to the universality of the scaling laws and the fluctuations at all length
scales, the results are expected to be independent on these microscopic assumptions.
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electrons and holes, which carry a different charge. This is not so much a problem
in the case of the impurity potential with its valleys and summits: in a particle-hole
transformation, a valley becomes a summit and vice versa.14 Furthermore, the direc-
tion of the Hall drift changes in this transformation. Because of the universality of the
quantum Hall effect, both types of impurity distributions related by particle-hole sym-
metry yield the same quantisation of the Hall resistance. The picture of semi-classical
localisation therefore applies also in the case of relativistic electrons in graphene.

The situation is different for the confinement potential. An ansatz of the form
V (y)1 – remember that the Hamiltonian of electrons in relativistic graphene is a 2×2
matrix that reflects the two different sublattices A and B – has the problem that an
increase V (y−ymax/min) → ∞ at the sample edge confines electrons but not the holes
of the valence band for which we would need V (y − ymax/min) → −∞ for an efficient
confinement. A possible confinement potential may be formed with the Pauli matrix
σz ,

Vconf(y) = V (y)σz =

(

V (y) 0
0 −V (y)

)

, (3.20)

which, together with the Hamiltonian (2.8), yields the Hamiltonian which corresponds
to the non-relativistic model (3.6). For a constant term M = V (y) the contribution
(3.20) plays the role of a mass of a relativistic particle (see also Appendix B). Therefore,
the confinement (3.20) is sometimes also called mass confinement. The corresponding
energy spectrum, which one obtains within the same approximation as in Sec. 3.1 via
the replacement y → y0 = kl2B in the Landau gauge, reads [c.f. Eq. (B.8) in Appendix
B]

ǫλn,y0
= λ

√

M2(y0) + 2
h̄2v2

l2B
n, (3.21)

and is schematically represented in Fig. 3.8(a). Notice that Eq. (3.21) is only valid
for n 6= 0 – indeed, the n = 0 acquires a non-zero energy M(y0), which is negative
for our particular choice (see Appendix B). This feature is sometimes called parity
anomaly in high-energy physics. Remember that in the case of graphene, one has two
inequivalent low-energy points in the first BZ which give rise to a relativistic energy
spectrum. The Dirac Hamiltonians (2.4) and (2.8) for the zero-B and magnetic-field
case, respectively, applies principally only to one of the two valleys (say K), whereas
that for the other valley is given by −HD (or −HB

D ) if one interchanges the A and B
components [c.f. Eq. (A.16) in Appendix A]. The confinement term (3.20) therefore
reads −Vconf(y) in the other valley, i.e. with a negative mass. The n = 0 LL thus shifts
to positive energies in the second valley, and the two-fold valley degeneracy is lifted in
this level. A more detailed discussion of the mass confinement (3.20) in graphene may
be found in the Appendix B.

This type of confinement may seem to be somewhat artificial, whereas the confine-
ment in the non-relativistic case is easier to accept. Notice, however, that the whole
model of massless Dirac fermions [second Hamiltonian in Eq. (2.4)] only describes

14The particle-hole transformed landscape corresponds to an impurity distribution in which one
interchanges negatively and positively charged impurities.
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Fig. 3.9 Measurement of the relativistic quantum Hall effect (Zhang et al., 2005). (a) RQHE

at fixed carrier density (VG = 15 V) at T = 30 mK. The filling factor is varied by sweeping

the magnetic field. (b) Sketch of the DOS with the Fermi energy between the LLs n = 0 and

+, n = 1. (c) RQHE at fixed magnetic field (B = 9 T) at higher temperatures, T = 1.6 K.

The filling factor is now varied by changing the gate voltage.

the physical properties at length scales that are large compared to the lattice spacing
(in graphene). In the true lattice model, the electrons are naturally confined because
one does not allow for hopping from a lattice site at the edge into free space. The
expression (3.20) is therefore only an effective model to describe confinement, but it
is described in a correct manner. For further reading, we refer the interested reader to
the literature (Castro Neto, Guinea, Peres, Novoselov and Geim, 2009).

With the help of these preliminary considerations, we are now prepared to under-
stand the RQHE in graphene – the semi-classical localisation is the same as in the non-
relativistic case, and the confinement, which needed to be adopted to account for the si-
multaneous presence of electron- and hole-like LLs, yields the edge states which are re-
sponsible for the quantum transport and, thus, the resistance quantisation. The RQHE
was indeed discovered in 2005 by two different groups (Novoselov, Geim, Morosov, Jiang, Katsnelson, Grigorieva, Dub
Zhang, Tan, Stormer and Kim, 2005), and the results are shown in Fig. 3.9 (Zhang, Tan, Stormer and Kim, 2005).
The phenomenology of the RQHE is the same as that of the IQHE in non-relativistic
LLs: one observes plateaus in the Hall resistance while the longitudinal resistance van-
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ishes. Notice that one may vary the filling factor either by changing the B-field at
fixed carrier density [Fig. 3.9(a)] or one keeps the B-field fixed while changing the
carrier density with the help of a gate voltage [Fig. 3.9(c)]. The latter measurement
is much easier to perform in graphene than in non-relativistic 2D electron gases in
semiconductor heterostructures.

In spite of the similarity with the non-relativistic IQHE, one notices, in Fig. 3.9,
an essential difference: the quantum Hall effect is observed at the filling factors

ν = ±2(2n+ 1), (3.22)

in terms of the LL quantum number n, whereas the IQHE is observed at ν = n
(or ν = 2n if the LLs are spin-degenerate). The step in units of 4 is easy to un-
derstand: each relativistic LL in graphene is four-fold degenerate (in addition to the
guiding-centre degeneracy), due to the two-fold spin and the additional two-fold valley
degeneracy. However, there is an “offset” of 2. This is due to the fact that the filling
factor ν = 0 corresponds to no carriers in the system, i.e. to a situation where the
Fermi energy is exactly at the Dirac point (undoped graphene). In this case, one has
a perfect electron-hole symmetry, and the n = 0 LL must therefore be half-filled [see
Fig. 3.8(b)], or else: there are as many electrons as holes in n = 0. According to the
considerations presented in Sec. 3.4, this does not correspond to a situation where
one observes a quantum Hall effect due to percolating extended states. Indeed, the
system turns out to be metallic at ν = 0 with a finite non-zero longitudinal resistance
(Novoselov, Geim, Morosov, Jiang, Katsnelson, Grigorieva, Dubonos and Firsov, 2005;
Zhang, Tan, Stormer and Kim, 2005). A situation, where one would expect a quantum
Hall effect, arises when the central LL n = 0 is completely filled (or completely empty).
As a consequence of the four-fold level degeneracy, one obtains the quantum Hall effect
at ν = 2 (or ν = −2) observed in the experiments (see Fig. 3.9). This is the origin of
the particular filling-factor sequence (3.22) of the RQHE in graphene.



4

Strong Correlations and the
Fractional Quantum Hall Effect

In the preceding chapter, we have seen that one may understand the essential featues
of the IQHE within a one-particle picture, i.e. in terms of Landau quantisation; at in-
teger filling factors ν = n, which correspond to n completely filled LLs,1 an additional
electron is forced, as a result of the Pauli principle, to populate the next higher (unoc-
cupied) LL [see Fig. 4.1(a)]. It therefore, needs to “pay” a finite amount of energy h̄ωC

[or
√

2(h̄v/lB)(
√
n−

√
n− 1) in the case of the RQHE in graphene] and is localised by

the impurities in the sample, due to the classical Hall drift which forces the electron
to move on closed equipotential lines. The system is said to be incompressible because
one may not vary the filling factor and pay only an infinitesimal amount of energy –
indeed in the case of a fixed particle number, consider an infinitesimal decrease of the
magnetic field which amounts to an infinitesimal change of the surface 2πl2B occupied
by each quantum state. Since the total surface of the system remains constant, the
infinitesimal increase of 2πl2B may not be accomodated by an infinitesimal change in
energy, due to the gap between the LL n− 1 and n where at least one electron must
be promoted to. This gives rise to a zero compressibility.

In view of this picture of the quantum Hall effect, it was therefore a big surprise to
observe a FQHE at a filling factor ν = 1/3, with the corresponding Hall quantisation
RH = h/e2ν = 3h/e2 (Tsui, Störmer and Gossard, 1983), and, later, at a large set of
other fractional filling factors. Indeed, if only the kinetic energy is taken into account,
the ground state at ν = 1/3 is highly degenerate and there is no evident gap present in
the system: the Pauli principle no longer prevents an additional electron to populate
the next higher LL, but it finds enough place in the lowest LL which is only one-third
filled.

Notice that we have neglected so far the mutual Coulomb repulsion between the
electrons, which happens to be responsible for the occurence of the FHQE. The rele-
vance of electronic interactions is discussed in the next section (Sec. 4.1). In Sec. 4.2,
we present the basic results of Laughlin’s theory of the FQHE, such as the ground-
state wave functions, fractionally charged quasi-particles and the interpretation of
Laughlin’s wave function in terms of a 2D one-component plasma. The related issue of
fractional statistics is introduced in a section apart (Sec. 4.3), and we close this chapter
with a short discussion of different generalisations of Laughlin’s wave function, such

1As before, we neglect the electron spin to render the discussion as simple as possible. The role of
spin will be discussed briefly in the last chapter on multi-component systems.
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Fig. 4.1 (a) Sketch of a completely occupied LL. An additional electron (grey circle) is forced

to populate the next higher LL because of the Pauli principle. (b) Sketch of a partially filled

LL. Because of the presence of unoccupied states in the LL (crosses), the Pauli principle

does not prevent an additional electron (grey circle) to populate the next higher LL. The

low-energy dynamical properties of the electrons are described by excitations within the

same LL (no cost in kinetic energy), and inter-LL excitations are now part of the high-energy

degrees of freedom.

as CF theory or the Moore-Read wave function in half-filled LLs.

4.1 The Role of Coulomb Interactions

As already mentioned above, the situation of a partially filled LL is somewhat opposite
to that of n completely occupied levels, where one observes the IQHE. This difference
is summarised in Fig. 4.1 and it is also the origin of the different role played by
the Coulomb repulsion between the electrons. In the case of n completely filled LLs,
one has a non-degenerate (Fermi-liquid-like) ground state, where the interactions may
be treated within a perturbative approach. Indeed, any type of excitation involves a
transition between two adjacent LLs that are separated by an energy gap of h̄ωC [see
Fig. 4.1(a)],2 and we need to compare the Coulomb energy at the characteristic length
scale RC = lB

√
2n+ 1 to this gap,

VC

h̄ωC
∼ me3/2

ǫh̄3/2
(Bn)−1/2,

which turns out to be nothing other than the usual dimensionless coupling constant

rs =
me2

ǫh̄2 n
−1
el

for the 2D Coulomb gas in Fermi liquid theory (Mahan, 1993; Giuliani and Vignale, 2005).
The last expression is obtained by identifying the Fermi energy EF = h̄2k2

F /2m, in
terms of the Fermi wave vector kF , with the energy of the last occupied LL h̄ωCn.
The perturbative approach allows one, e.g., to describe collective electronic excita-
tions in the IQHE, such as magneto-plasmon modes (the 2D plasmon in the presence
of a magnetic field) or magneto-excitons (inter-LL excitations that acquire a disper-
sion due to the Coulomb interaction) (Kallin and Halperin, 1984), or else the cor-
responding modes of the RQHE in graphene (Iyengar, Wang, Fertig and Brey, 2007;
Roldán, Fuchs and Goerbig, 2009).

2In order to simplify the discussion, we consider only the IQHE in non-relativistic quantum Hall
systems, but the arguments apply also to the RQHE in graphene.
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In the case of a partially filled LL n the situation is inverted: for an electronic
excitation, there are enough unoccupied states in the LL n for an electron of the same
level to hop to. From the point of view of the kinetic energy, there is no energy cost
associated with such an excitation (low-energy degrees of freedom) whereas an exci-
tation to the next higher (unoccupied) LL costs an energy h̄ωC . Inter-LL excitations
may then be neglected as belonging to high-energy degrees of freedom [Fig. 4.1(b)].
Notice that all possible distributions of N electrons within the same partially filled LL
n therefore have the same kinetic energy, which effectively drops out of the problem.
The macroscopic degeneracy may be lifted by phenomena due to other energy scales,
such as those associated with the impurities in the sample or else the electron-electron
interactions. The first hypothesis (impurities) may be immediately discarded as the
driving mechanism of the FQHE because, in contrast to the IQHE, the FQHE only
occurs in high-quality samples with low impurity concentrations. Indeed, the hierarchy
of energy scales in the FQHE may be characterised by the succession

h̄ωC >∼ VC ≫ Vimp, (4.1)

and we therefore need to consider seriously the Coulomb repulsion, which govern the
low-energy electronic properties in a partially filled LL.3 Notice that we thus obtain
a system of strongly-correlated electrons for the description of which all perturbative
approaches starting from the Fermi liquid are doomed to fail. The only hope one may
have to describe the FQHE is then a well-educated guess of the ground state.

The most natural guess would be that the electrons in a partially filled LL be-
have as classical charged particles that form a crystalline state in order to minimise
their mutual Coulomb repulsion. Such a state is also called Wigner crystal (WC)
because it was first proposed by Wigner in 1934 (Wigner, 1934). A WC has indeed
been thought – before the discovery of the FQHE – to be the ground state of elec-
trons in a partially filled LL (Fukuyama, Platzman and Anderson, 1979). Even if the
WC is the ground state at very low filling factors, as it has been shown experimentally
(Andrei, Deville, Glattli, Williams, Paris and Etienne, 1988), this state may not allow
for an explanation of the FQHE. Indeed, the WC is a state that breaks a continuous
spatial symmetry (translation invariance) and any such state has gapless long-wave-
length excitations (Goldstone modes). The Goldstone mode of the WC (as of any other
crystal) is the acoustic phonon the energy of which tends to zero at zero wave vector.
One may thus compress the WC by changing the occupied surface in an infinitesimal
manner or else by adding an electron without changing the macroscopic surface and
pay only an infinitesimal amount of energy. The ground state is therefore compressible,
i.e. it is not separated by an energy gap from its single-particle excitations, a situation
that is at odds with the FQHE.

4.2 Laughlin’s Theory

As a consequence of the above-mentioned considerations on the WC, one thus needs to
search for a candidate for the ground state that does not break any continuous spatial

3As for the IQHE, impurities play nevertheless an important role in the localisation of quasi-
particles, which we need to invoke later in this chapter in order to explain the transport properties
of the FQHE.
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symmetry and that has an energy gap. Such a state is the incompressible quantum
liquid which was proposed by Laughlin in 1983 (Laughlin, 1983) the basic features of
which we present in the present section. We consider, here, only the FQHE in the lowest
LL (LLL), for simplicity. There are different prescriptions to generalise the associated
wave functions to higher LLs, e.g. with the help of Eq. (2.18) (see MacDonald, 1984).
Experimentally, several FQHE states have been observed in the next higher LL n = 1
although the majority of FQHE states is found in the LLL.4

4.2.1 Laughlin’s guess from two-particle wave functions

In order to illustrate – one cannot speak of a derivation – Laughlin’s wave function, we
first need to remember the one-particle wave function of the LLL and then consider
the corresponding two-particle wave function. We have already seen in Sec. 2.4.1 that
a one-particle wave function in the LLL is described in terms of an analytic function
times a Gaussian,5

ψ ∼ zm′

e−|z|2/4,

in terms of the integer m′ = 0, ..., NB − 1, where we have absorbed now (and in the
remainder of these lecture notes) the magnetic length in the definition of the complex
position, z = (x − iy)/lB.

Consider, in a second step, an arbitrary two-particle wave function. This wave
function must also be an analytic function of both postions z1 and z2 of the first and
second particle, respectively, and may be a superposition of polynomials, such as e.g.
of the basis states

ψ(2)(z, Z) ∼ ZMzme−(|z1|
2+|z2|

2)/4, (4.2)

where we have defined the centre of mass coordinate Z = (z1 + z2)/2 and the relative
coordinate z = (z1−z2). The quantum number m plays the role of the relative angular
momentum between the two particles, and M is associated with the total angular
momentum of the pair. Because of the analyticity of the LLL wave functions, m must
be an integer, and the exchange of the positions z1 and z2 imposes on m to be odd
because of the electrons’ fermionic nature.

Laughlin’s wave function (Laughlin, 1983) is a straight-forward N -particle gener-
alisation of the two-particle wave function (4.2),

ψL
m

({

zj , z
∗
j

})

=
∏

k<l

(zk − zl)
m e−

P

j |zj|
2/4, (4.3)

where we have omitted the normalisation constants in order to simplify the notation
and where all indices run from 1 to the total number of particles N . Notice that there is
no dependence on the centre of mass, but only on the relative coordinates between the
particle pairs. Had there been such a dependence, described by a non-zero value of the
total angular momentum quantum numberM 6= 0, one would have broken a continuous
spatial symmetry, in which case the state would describe a compressible rather than

4There is even some slight indication for a 1/5 FQHE state in the next excited LL n = 2
(Gervais, Engel, Stormer, Tsui, Baldwin, West and Pfeiffer, 2004).

5We neglect the numerical prefactors here that account for the normalisation of the wave functions.
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an incompressible state required for the FQHE, as we have mentioned above. We
emphasize once again that Laughlin’s wave function is not based on a mathematical
derivation, although we will see below that there exist some mathematical models for
which it describes the exact ground state, but it is more appropriately characterised
as a variational wave function.

Variational parameter. The variational parameter in Laughlin’s wave function (4.3)
is nothing other than the exponent m, with respect to which we would, in principle,
need to optimised the wave function in order to approximate the true ground state of
the system. Notice, however, that due to the LLL analyticity condition and fermionic
statistics, the exponent is restricted to odd integers, m = 2s + 1, in terms of the
integer s. Furthermore, this variational parameter turns out to be fully determined by
the filling factor ν, as we will show with the following argument.6

Consider Laughlin’s wave function as a function of the position zk of some arbitrary
but fixed electron k. There are N − 1 factors of the type (zk − zl)

m, one for each of
the remaining N − 1 electrons, l, occuring in the ansatz (4.3), such that the highest
power of zk is m(N − 1),

∏

k<l

(zk − zl)
m ∼ z

m(N−1)
k .

Now, remember from Sec. 2.4.1 [see Eq. (2.54)] that the highest power of the complex
particle position is fixed by the number of states NB in each LL. This yields the
relation

mN − δ = NB (4.4)

between the number of particles N and the number of flux quanta NB threading the
system. Here, δ is some shift that is on the order of unity and that plays no role in the
thermodynamic limit N,NB → ∞.7 Because the ratio between the number of particles
and that of flux quanta is nothing other than the LL filling factor (2.44), ν = N/NB,
one notices that, in the thermodynamic limit, the “variational parameter” is entirely
fixed by the filling factor, i.e.

m = 2s+ 1 =
1

ν
⇔ ν =

1

m
=

1

2s+ 1
, (4.5)

and Laughlin’s wave function is therefore a candidate wave function for the ground
state at the filling factors

ν = 1, 1/3, 1/5, ...

Remember that the odd value m = 2s+1 is required by the fermionic nature of the
electrons. Formally, one may though lift this restriction and generalise Laughlin’s wave
function to bosonic particles by choosing an even exponent 2s. Such bosonic Laughlin
wave functions have been studied theoretically in the context of rotating cold Bose
gases in an optical trap (Cooper, 2008).

6We are therefore confronted with the somewhat bizarre situation where we dispose of a variational
wave function with no possible variation.

7Notice, however, that this shift plays an important role in numerical calculations, such as exact
diagonalisation, when performed on special geometries, such as on a sphere.
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Laughlin’s wave function at ν = 1. It may seem, at first sight, astonishing that also
the case of a completely filled LL for ν = 1 is described in terms of a Laughlin wave
function with m = 1 (or s = 0). Indeed, the state

ψ ({zj}) = fN ({zj}) e−
P

j |zj|
2/4

would be non-degenerate and could thus be described in terms of a Slater determinant,

fN ({zj}) = det
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N











, (4.6)

where we have omitted the ubiquitous Gaussian factor exp(−∑j |zj|2/4). Notice that
the j-th line in this determinant corresponds to all LLL states of the j-th particle
described in terms of the polynomials zm

j . The determinant takes into account all
permutations of the N particles over the N particle positions, z1, ..., zN , and may be
rewritten in a compact manner with the help of the co-called Vandermonde determi-
nant,

fN ({zj}) =
∏

i<j

(zi − zj) , (4.7)

which is indeed nothing other than the polynimial prefactor in Laughlin’s wave func-
tion (4.3) with m = 1.

Until now we have obtained an N -particle wave function from some very general
symmetry considerations (LLL analyticity condition, fermionic statistics, no broken
continuous spatial symmetries), but we have not at all shown that it describes indeed
the ground state responsible of the FQHE. In the following parts, we will therefore
discuss the basic physical properties of this, for the moment rather abstract, math-
ematical entity. In a first step, we will discuss some energy properties of the ground
state and show that Laughlin’s wave function is the exact ground state of a certain
class of models that are qualitatively compared to the physical one (Coulomb inter-
action). We will then discuss the fractionally charged quasi-particle excitations of this
wave function.

4.2.2 Haldane’s pseudopotentials

In order to describe the energetic properties of Laughlin’s wave function (4.3), we
consider again the two-particle wave function (4.2). Notice that this wave function
is an exact eigenstate for any central interaction potential that depends only on the
relative coordinate z between particle pairs, such as it is the case for the Coulomb
interaction, V = V (|z|). One may therefore decompose the interaction potential in the
relative angular momentum quantum numbers m,

vm ≡ 〈m,M |V |m,M〉
〈m,M |m,M〉 , (4.8)
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where the denominator takes into account the fact that we have not properly nor-
malised the two-particle wave functions (4.2), ψ(2)(z, Z) = 〈z, Z|m,M〉.8 The fact
that there is no dependence on M is a direct consequence of the assumption that we
deal with a central interaction potential, i.e. 〈z, Z|V |z′, Z ′〉 = V (|z|)δz,z′δZ,Z′ . Fur-
thermore, there are no off-diagonal terms of the form 〈m,M |V |m′,M〉, with m′ 6= m,
as one may show explicitly in the polar representation z = ρ exp(iφ),

〈m,M |V |m′,M〉 ∝
∫ 2π

0

dφ

∫ ∞

0

dρ ρm+m′+1V (ρ)e−i(m−m′)φ ∝ δm,m′ ,

due to the integration over the polar angle. The potentials vm obtained from the
decomposition into relative angular momentum states are also called Haldane’s pseu-
dopotentials (Haldane, 1983). They fully characterise the two-particle energy spectrum
because the kinetic energy is the same for all two-particle states |m,M〉, as described
above. Notice that this is a very special case: normally any repulsive interaction poten-
tial yields unbound states with a continuous energy spectrum, such as the plane-wave
states in scattering theory. Here, the energy spectrum is discrete even if the interac-
tion is repulsive, due to the presence of a quantising magnetic field. Notice further
that Haldane’s pseudopotentials are an image of the real-space form of the interaction
potential. Indeed, if a pair of electrons is in a quantum state with relative angular
momentum m, the average distance between the electrons is |z| ∼ lB

√
2m.9 Haldane’s

pseudopotential vm is therefore roughly the value of the original interaction potential
at the relative distance lB

√
2m,

vm ≃ V
(

|z| = lB
√

2m
)

, (4.9)

and the small-m components of Haldane’s pseudopotentials correspond to the short-
range components of the underlying interaction potential. Figure 4.2 shows the pseu-
dopotential expansion for the Coulomb interaction in the lowest (n = 0) and the first
excited (n = 1) LL.

Haldane’s pseudopotentials are extremely useful in the description of theN -particle
state as well. Indeed, the N -particle interaction Hamiltonian V may be rewritten in
terms of pseudopotentials as

V =
∑

i<j

V (|zi − zj|) =
∑

i<j

∞
∑

m′=0

vm′Pm′(ij), (4.10)

where the operator Pm′(ij) projects the electron pair ij onto the relative angular
momentum state m′. Notice that due to the factor

∏

k<l(zk − zl)
m in Laughlin’s wave

function (4.3), no particle pair is in a relative angular momentum state m′ < m. If

8In order to simplify the notations, we have omitted the LL quantum number n = 0, which is the
same for both particles in this wave function.

9This is similar to the average value of the radius at which the electron’s guiding centre is placed in
the symmetric gauge (see Sec. 2.4.1). Remember (e.g. from classical mechanics) that the decomposition
of a two-particle wave function in relative and centre-of-mass coordinates maps the two-body problem
to an effective one-body problem.
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Fig. 4.2 Haldane’s pseudopotentials for the Coulomb interaction in the LLs n = 0 and

n = 1. Notice that we have plotted the pseudopotentials for both odd and even values of the

relative angular momentum m even though only odd values matter in the case of fermions.

one then chooses, though somewhat artificially, all pseudopotentials with a m < m′ to
be positive (say 1) and all others zero,

v′m =

{

1 for m′ < m
0 for m′ ≥ m

(4.11)

one obtains V ψL
m = 0, i.e. Laughlin’s wave function is the zero-energy eigenstate of the

model (4.11). Since the model describes an entirely repulsive interaction, all possible
states must have an energy E ≥ 0. Therefore, Laughlin’s wave function is even the
exact ground state of the model (4.11). Furthermore, it is the only zero-energy state
because if one keeps the total number of particles and flux fixed, any other state
different from that described by Laughlin’s wave function involves a particle pair in a
state with an angular momentum quantum number different from m. If it is smaller
than m, this particle pair is affected by the associated non-zero pseudopotentialm′ and
thus costs an energy on the order of vm′ > 0. If the particle pair is in a momentum state
with m′ > m, there is at least another pair with m′′ < m in order to keep the filling
factor fixed, and this pair raises the energy. These general arguments show that any
excited state involves a finite (positive) energy given by a pseudopotential vm′ , with
m′ < m, which plays the role of an energy gap. In this sense, the liquid state described
by Laughlin’s wave function is indeed an incompressible state that already hints at
the possibility of a quantum Hall effect if we can identify the correct quasi-particle of
this N -particle state that becomes localised by the sample impurities.

Notice that the above considerations are based on an extremely artificial model
interaction (4.11) that has, at first sight, very little to do with the physical Coulomb
repulsion. However, the model is often used to generate numerically (in exact-diagonali-
sation calculations) the Laughlin state, which may then be compared to the Coulomb
potential decomposed in Haldane’s pseudopotentials. This procedure has shown that
theL aughlin state generated in this manner has an overlap of more than 99% with the
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state obtained from the Coulomb potential (Haldane and Rezayi, 1985; Fano, Ortolani and Colombo, 1986),
which is amazingly high for a wave function obtained from a well-educated guess. This
high accuracy of Laughlin’s wave function may be understood in the following manner:
when one decomposes the Coulomb interaction potential in Haldane’s pseudopoten-
tials, one obtains a monotonically decreasing function when plotted as a function of
m (see Fig. 4.2). Furthermore, the component v1 is much larger than v3 and all other
pseudopotentials vm with higher values of m.10 These higher terms may be treated in
a perturbative manner and do not change the ground state which is protected by the
above-mentioned gap on the order of v1 > vm, with m > 1.

Furthermore, we mention that, apart from its successful verification by exact-
diagonalisation calculations (Haldane and Rezayi, 1985; Fano, Ortolani and Colombo, 1986),
Laughlin, in his original paper (Laughlin, 1983), showed within a variational calcula-
tion that the quantum liquid described by his wave function (4.3) has indeed a lower
energy than the previously proposed WC. Again the reason for this unexpected feature
is the capacity of Laughlin’s wave function, which varies as r2m when two particles i
and j approach each other with r = |zi − zj|, to screen the short-range components
of the interaction potential. Notice that for a WC of fermions, the corresponding N -
particle wave function decreases as r2, as dictated by the Pauli principle.

4.2.3 Quasi-particles and quasi-holes with fractional charge

Until now, we have discussed some ground-state properties of Laughlin’s wave func-
tion. We have seen that the Laughlin state at ν = 1/m is insensitive to the short-range
components of the interaction potential described by Haldane’s pseudopotentials vm′

with m′ < m, whereas excited states must be separated from the ground state by a
gap characterised by these short-range pseudopotentials. However, we have not char-
acterised so far the nature of the excitations.

There are two different sorts of excitations: (i) elementary excitations (quasi-
particles or quasi-holes) that one obtains by adding or removing charge from the
system, and (ii) collective excitations at fixed charge. The latter are simply a charge-
density-wave excitation which consist of a superposition of particle-hole excitations
at a fixed wave vector q (the momentum of the pair) and which may be shown to
be gapped at all values of q. Its dispersion reveals a minimum (called magneto-roton
minimum) at a non-zero value of the wave vector that indicates a certain tendency
to form a ground state with modulated charge density, such as a WC. The charac-
teristic dispersion relation of these collective excitations is shown in Fig. 4.3(a). How-
ever, we do not discuss collective excitations here and refer the interested reader to
the literature for a more detailed discussion (Girvin, MacDonald and Platzman, 1986;
Prange and Girvin, 1990), and concentrate here on a presentation of the elementary
excitations.

Quasi-holes. Elementary excitations are obtained when sweeping the filling factor
slightly away from ν = 1/m. Remember that there are two possibilities for varying
the filling factor: adding charge to the system by changing the electronic density or

10One has v1/v3 ≃ 1.6 in the LLL. Notice that pseudopotentials with even angular momentum
quantum number m do not play any physical role because of the fermionic nature of the electrons.
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m
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(a) (b)

Fig. 4.3 (a) Dispersion relation for collective charge-density-wave excitations (Girvin, Mac-

Donald and Platzman, 1986). The continuous lines have been obtained in the so-called sin-

gle-mode approximation (Girvin, MacDonald and Platzman, 1986) for the Laughlin states

at ν = 1/3, 1/5 and 1/7, whereas the points are exact-diagonalisation results (Haldane and

Rezayi, 1985; Fano, Ortolani and Colombo, 1986). The arrows indicated the characteristic

wave vector of the WC state at the corresponding densities. (b) Quasi-hole excitation. Each

electron jumps from the state m to the next-higher angular momentum state m + 1.

adding (or removing) flux by varying the magnetic field. Remember further [see Eq.
(4.4)] that the number of flux is intimitely related to the number of zeros in Laughlin’s
wave function. We therefore consider the ansatz

ψqh

(

z0,
{

zj , z
∗
j

})

=

N
∏

j=1

(zj − z0)ψ
L
m

({

zj, z
∗
j

})

(4.12)

for an excited state. Each electron at the positions zj thus “sees” an additional zero
at z0. In order to verify that this wave function adds indeed another flux quantum to
the system, we may expand Laughlin’s wave function (4.3) formally in a polynomial,

ψL
m({zj, z

∗
j }) =

∑

{mi}

αm1,...,mN
zm1

1 ... zmN

N e−
P

j |zj|
2/4,

where the αm1,...,mN
describe the expansion coefficients. We now choose the position

z0 at the centre of the disc, in which case the wave function of the excited state (4.12)
simply reads

ψqh({zj, z
∗
j }) =

∑

{mi}

αm1,...,mN
zm1+1
1 ... zmN+1

N e−
P

j
|zj |

2/4,

i.e. each exponent is increased by one, mi → mi + 1. This may be illustrated in the
following manner: each electronjumps from the angular momentum state m to a state
in which the angular momentum is increased by one (see Fig. 4.3), leaving behind
an empty state at m = 0. The excitation is therefore called a quasi-hole as we have
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already suggested by the subscript in Eq. (4.12). This also affects the quantum state
with highest angular momentum M , i.e. we have increased the sample size by the
surface occupied by one flux quantum, while keeping the number of electrons fixed.11

Furthermore, this quasi-hole is associated with a vorticity if one considers the phase
of the additional factor in Eq. (4.12),

ψqh(z0 = 0, {zj, z
∗
j }) ∝

N
∏

j

e−iθj × ψL
m

({

zj, z
∗
j

})

,

i.e. each particle that circles around the origin z0 = 0 experiences an additional phase
shift of 2π as compared to the original situation described in terms of Laughlin’s wave
function (4.3). This is reminiscent of the vortex excitation in a type-II superconductor
(Tinkham, 2004).

We have seen above that one can create a quasi-hole excitation at the postion z0 by
introducing one additional flux quantum, NB → NB +1, which lowers the filling factor
by a tiny amount. However, we have not yet determined the charge associated with
this elementary excitation. This charge may be calculated by considering the filling
factor fixed, i.e. we need to add some (negative) charge to compensate the extra flux
quantum in the system. From Eq. (4.4), we notice that the relation between the extra
flux ∆NB and the compensating extra charge ∆N is simply given by

m∆N = ∆NB ⇔ ∆N =
∆NB

m
. (4.13)

This very important result is somewhat unexpected: in order to compensate one ad-
ditional flux quantum (∆NB = 1), one would need to add the m-th fraction of an
electron. The charge deficit caused by the quasi-hole excitation is therefore

e∗ =
e

m
, (4.14)

i.e. the quasi-hole carries fractional charge.

Quasi-particles. In the preceding paragraph, we have considered a quasi-hole exci-
tation that is obtained by introducing an additional flux quantum in the system [or,
mathematically, an additional zero in the Laughlin wave function, see Eq. (4.12)]. Nat-
urally, one may also lower the number of flux quanta by one in which case one obtains
a quasi-particle excitation with opposite vorticity as compared to that of the quasi-
hole excitation. This opposite vorticity suggests that we use a prefactor

∏N
j=1(z

∗
j −z∗0),

instead of
∏N

j=1(zj − z0) as in the expression (4.12), in order to create a quasi-particle
excitation at the position z0. Remember, however, that the resulting wave function
would have unwanted components in higher LLs because the analyticity condition

11Naturally, the total surface of the quantum Hall system remains constant, but physically we have
slightly increased the B-field. Each quantum state occupies then an infinitesimally smaller surface
2πl2B , such that the system may accomodate for one more quantum state, M = NB → NB + 1.
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Fig. 4.4 Experimental setup for the observation of fractionally charged quasi-particles. In

addition to the usual geometry, one adds, at the upper and the lower edges, side gates that

are used to deplete the region around the gates by the application of a voltage Vsg. The filling

factor is chosen to be ν = 1/3. As a result, the edge states at the opposite edges are brought

into close vicinity. (a) Weak-backscattering limit. The incompressible liquid has a bottleneck

at the side gates, i.e. the edges are so close to each other that a tunneling event between them

has a finite probability. A particle injected at the left contact may thus be backscattered (grey

arrow) in a region filled by the incompressible Laughlin liquid, although the majority of the

particles reaches the right contact (black arrows). (b) Strong-backscattering limit. If one

increases the side-gate voltage Vsg , the incompressible ν = 1/3 liquid is eventually cut into

two parts separated by a fully depleted region (ν = 0). In this case, backscattering is the

majority process (black arrow), and a tunneling may occur over the depleted region such that

a particle injected at the left contact may still reach the right one (grey arrows).

of the LLL is no longer satisfied. In order to heal the quasi-particle expression, one
formally projects it into the LLL,

ψqp

(

z0,
{

zj , z
∗
j

})

= PLLL

N
∏

j=1

(z∗j − z∗0)ψL
m

({

zj , z
∗
j

})

. (4.15)

There are several manners of taking into account this projection PLLL. A common
one consists of replacing each occurence of the non-analytic variables z∗j (and powers
of them) in the polynomial part of the wave function by a derivative with respect to zj

in the same polynomial (Girvin and Jach, 1984). By partial integration, this amount
to deriving the Gaussian factor by (∂zj

)m which, up to a numerical prefactor, yields
exactly the non-analytic polynomial factor z∗j

m. We will encounter this projection
scheme again in the discussion of the CF generalisation of Laughlin’s wave function
(Sec. 4.4.1).

4.2.4 Experimental observation of fractionally charged quasi-particles

That the fractional charge of Laughlin quasi-particles12 is not only a mathematical con-
cept but a physical reality has been proven in a spectacular manner in so-called shot-

12From now on, we use the term “(Laughlin) quasi-particles” generically in order to denote quasi-
particles and quasi-holes.
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noise experiments on the ν = 1/3 FQHE state (de Picciotto, Reznikov, Heidblum, Umansky, Bunin and Mahalu, 1997
Saminadayar, Glattli, Jin and Etienne, 1997).13 In these experiments, one constrains
the quantum Hall system with the help of side gates (see Fig. 4.4) that are used
to deplete the region in their vicinity via the application of a gate voltage Vsg . As
a consequence of this depletion the quantum Hall system has a bottleneck where the
corresponding edge states are brought into spatial vicinity [Fig. 4.4(a)] or where the in-
compressible quantum liquid may even be cut into two parts separated by a completely
depleted barrier [Fig. 4.4(b)]. In the first case, an injected charge may be backscattered
in a tunneling event at the bottleneck over a region filled by the ν = 1/3 liquid (weak-
backscattering limit). If one increases the side-gate voltage, the incompressible liquid
becomes eventually cut into two parts separated by a completely depleted barrier, and
one obtains the strong-backscattering limit.

In a shot-noise measurement, one does not only measure the average current Ī
(over a certain time interval) but simultaneously the (square of the) current fluctuation

¯(∆I)2 which is proportional to the carrier charge. If the elementary charged excitations
are e∗ = e/3 quasi-particles and not electrons, one may expect to measure this particu-
lar charge. The experiments (de Picciotto, Reznikov, Heidblum, Umansky, Bunin and Mahalu, 1997;
Saminadayar, Glattli, Jin and Etienne, 1997) have indeed shown that the charge mea-
sured in the shot noise is e∗ = e/3 if the tunneling process takes place at a bottleneck
filled with the incompressible quantum liquid [Fig. 4.4(a)], whereas it is the usual
elementary charge e in the case of a tunneling process over a depleted region [Fig.
4.4(b)].

4.2.5 Laughlin’s plasma analogy

A compelling physical picture of Laughlin’s wave function (4.3) and the properties of
its elementary excitations (4.12) and (4.15) with fractional charge has been provided
by Laughlin himself (Laughlin, 1983), in terms of an analogy with a classical 2D one-
component plasma. In the present subsection, we present the basic ideas and results
of this plasma analogy, for completeness and pedagogical reasons. However, no new
results will come out of this analogy here, as compared to those derived above.

Remember from basic quantum mechanics that the modulus square of a quantum-
mechanical wave function may be interpreted as a statistical probability distribution.
For Laughlin’s wave function (4.3), one obtains the probability distribution

∣

∣ψL
m ({zj})

∣

∣

2
=
∏

i<j

|zi − zj|2m
e−

P

j
|zj |

2/2.

Now, remember from classical statistical mechanics that a probability distribution in
the canonical ensemble is the Boltzmann weight, exp(−βH), of some Hamiltonian H
and that the classical partition function, which encodes all relevant statistical informa-
tion, is obtained from a sum over the Boltzmann weights of all possible configurations
C, Z =

∑

C exp[−βH(C)]. Laughlin’s plasma analogy consists precisely of the identifi-
cation of the modulus square of his wave function with the Boltzmann weight of some
mock Hamiltonian Ucl.

14 The mock Hamiltonian may be obtained exactly from this

13Later this kind of experiment has been repeated for other FQHE states.
14mock: singlish for fake; mainly used the description of Singaporean catering food.
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identification,

− βUcl = ln
∣

∣ψL
m ({zj})

∣

∣

2
, (4.16)

and one obtains, by choosing somewhat artificially β = 2/q,15

Ucl = −q2
∑

i<j

ln |zi − zj | + q
∑

j

|zj |2
4

. (4.17)

This is nothing other than the classical Hamiltonian of a 2D one-component plasma,
in terms of the charge

q = m = 2s+ 1 (4.18)

of the plasma particles. The first term of Eq. (4.17) reflects the interactions between
the charged plasma particles, whereas the second term describes their interaction with
a neutralising background of positive charge, as in the case of the jellium model of the
Coulomb gas (Mahan, 1993; Giuliani and Vignale, 2005). This may be seen best with
the help of Poisson’s equation, −∆φ = 2πqnq(r), for an electrostatic 2D potential
due to the charge density qnq. The first term describes then indeed particles with
charge q interacting via the 2D Coulomb interaction potential φ(r) = − ln(|r|/lB),
and the second term is the interactions with the neutralising background because
∆|r|2/4l2B = 1/l2B = 2πnB, where the flux density nB may thus be viewed as the
charge density of the positively charged background.

In order to minimise the energy of the mock Hamiltonian Ucl, which corresponds
to a distribution of highest weight, the 2D plasma thus needs to be charge-neutral, i.e.
the charge density of the plasma particles qnel must be compensated by that of the
background nB,

nB − qnel = 0, (4.19)

which, together with Eq. (4.18), yields nothing other than the relation between the
filling factor ν and the exponent in Laughlin’s wave function (4.5), ν = nel/nB = 1/m.

The plasma analogy does not only apply to the ground-state wave function (4.3)

but also to the quasi-hole excitation (4.12). The additional factor
∏N

j=1(zj −z0) in the
quasi-hole wave function (4.12) yields, within the plasma analogy (4.16), an additional
term

V = −q
N
∑

j=1

ln |zj − z0| (4.20)

to the mock Hamiltonian (4.17), Ucl → Ucl + V . This additional term may be inter-
preted as the interaction of the plasma particles with an “impurity” of unit charge
at the position z0. In order to maintain charge neutrality, the impurity needs to
be screened by the plasma particles. Since the charge of each plasma particle is
q = m = 2s + 1 and thus greater than unity, one needs 1/q plasma particles to
screen the impurity of charge one. Remember that each plasma particle represents
one electron of unit charge in the original Laughlin liquid. One therefore obtains the
same charge fractionalisation of the Laughlin quasi-particle (4.14), e∗ = e/m, as in
the original quantum model.

15Notice that Laughlin’s wave function describes a system at T = 0, such that temperature does
not intervene in the expressions. The choice is purely formal.
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Fig. 4.5 (a) Process in which a particle A moves on a path C around another particle B.

In three space dimensions, one may profit from the third direction (z-direction) to lift the

path over particle B and thus to shrink the path into a single point. (b) Process equivalent

to moving A on a closed path around B which consists, apart from a topologically irrelevant

translation, of two successive exchanges of A and B.

4.3 Fractional Statistics

4.3.1 Bosons, fermions and anyons – an introduction

One of the most exotic consequences of charge fractionalisation in 2D quantum me-
chanics, exemplified by Laughlin quasi-particles, is fractional statistics. Remember
that, in three space dimensions, the quantum-mechanical treatment of two and more
particles yields a superselection rule according to which quantum particles are, from
a statistical point of view, either bosons or fermions. This superselection rule is no
longer valid in 2D (two space dimensions), and one may find intermediate statistics
between bosons and fermions. The corresponding particles are called anyons, because
the statistics may be any. The present section is meant to illustrate these amazing
aspects of 2D quantum mechanics, and we try to avoid a too formal or mathemati-
cal treatment. We refer, again, the interested reader to the more detailed literature
(Nayak, Simon, Stern, Friedman and Das Sarma, 2008).

In order to illustrate the different statistical (i.e. exchange) properties of two quan-
tum particles in three and two space dimensions, consider a particle A that moves
adiabatically on a closed path C in the xy-plane around another one B of the same
species (see Fig. 4.5). We choose the path to be sufficiently far away from particle B
and the two particles to be sufficiently localised such that we can neglect corrections
due to the overlap between the two corresponding wave functions. Notice first that
such a process T is equivalent, apart from a topologically unimportant translation, to
two successive exchange processes E , in which one exchanges the positions of A and
B. Algebraically, this may be expressed in terms of the corresponding operators as

E2 = T or E = ±
√
T , (4.21)

modulo a translation.
Let us discuss first the three-dimensional case. Because of the presence of the

third direction (z-direction), one may elevate the closed path in this direction while
keeping the position of particle A fixed in the xy plane. We call the elevated path
C′. Furthermore, one may now shrink the closed loop C′ into a single point at the
position A without passing by the position of particle B which remains in the xy-
plane. This final (point-like) path is called C′′. Although this procedure may seem
somewhat formal, a quantum-mechanical exchange process does principally not specify
the exchange path in order to define whether a particle is a boson or a fermion, but
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only its topological properties. From a topological point of view, all paths that may
be continuously deformed into each other define a homotopy class (Mermin, 1979).
Equation (4.21) must therefore be viewed as an equation for homotopy classes in which
a simple translation and an allowed deformation are irrelavant. As a consequence of
these considerations, the simple point-like path C′′ at the position of particle A, which
may be formally described by C′′ = 1, is in the same homotopy class as the original
path C. Therefore, the associated processes are the same, and one has

T = T (C) = T (C′′) = 1 and thus E =
√1, (4.22)

where the last equation is symbolic in terms of the one operator. It indicates that the
quantum-mechanical operator E , corresponding to particle exchange, has two eigenval-
ues that are the two square roots of unity, eB = exp(2iπ) = 1 and eF = exp(iπ) = −1.
This is precisely the above-mentioned superselection rule, according to which all quan-
tum particles in three space dimensions are either bosons (eB = 1) or fermions
(eF = −1).

In two space dimensions, this topological argument yields a completely different
result. It is not possible to shrink a path C enclosing the second particle B into a single
point at the position of A, without passing by B itself. This means that the position of
B must be an element of the path at a certain moment of the shrinking process, which
cannot profit from a third dimension in order to elevate the loop on which it moves
above the xy-plane. The single point still represents a homotopy class of paths, but
these paths do not enclose another particle, and C is therefore an element of another
homotopy class, i.e. the one of all paths starting from A and enclosing only the particle
B. If there are more than two particles present, the homotopy classes are described by
the integer number of particles enclosed by the paths in this class. From an algebraic
point of view, the exchange processes are no longer described by the two roots of unity,
1 and −1, but by the so-called braiding group, and the classification in bosons and
fermions is no longer valid. In the simplest case of Abelian statistics,16 one needs to
generalise the commutation relation

ψ(r1)ψ(r2) = ±ψ(r2)ψ(r1), (4.23)

for bosons and fermions, respectively, to

ψ(r1)ψ(r2) = eiαπψ(r2)ψ(r1), (4.24)

where α is also called the statistical angle. One has α = 0 for bosons and α = 1
for fermions, and all other values of α in the interval between 0 and 2 for anyons.
Sometimes anyonic statistics is also called fractional statistics – indeed all physical
quasi-particles, such as those relevant for the FQHE, have an angle that is a fractional
(or rational) number, but there is no fundamental objection that irrational values of
the statistical angle should be excluded.

16There are more complicated cases of non-Abelian statistics, in which the exchange processes of
more than two different particles no longer commute, but we do not discuss this case here and refer
the reader to the review by Nayak et al. (Nayak, Simon, Stern, Friedman and Das Sarma, 2008).
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Before discussing the anyonic nature of Laughlin quasi-particles, we need to men-
tion an important issue in these statistical considerations. We know that fermions are
forced to satisfy Pauli’s principle which excludes double occupancy of a single quantum
state, whereas the number of bosons per quantum state is unrestricted. What about
anyons then? In the context of quantum fields the Pauli principle yields, via Eq. (4.23)
for r = r1 = r2,

ψ(r)ψ(r) = 0.

For an arbitrary statistical angle, one obtains in the same manner, from Eq. (4.24),
(

1 − eiαπ
)

ψ(r)ψ(r) = 0, (4.25)

which may be viewed as a generalised Pauli principle for 2D anyons (Haldane, 1991).
Only if α = 0 modulo 2, we may have ψ(r)ψ(r) 6= 0 in order to satisfy Eq. (4.25).
Otherwise, when α 6= 0 modulo 2, we necessarily have ψ(r)ψ(r) = 0. Anyons are, thus,
from an exclusion-principle point of view more similar to fermions than to bosons.

4.3.2 Statistical properties of Laughlin quasi-particles

We may now apply the above general statistical considerations to the case of Laughlin
quasi-particles. The basic idea is to describe the statistical angle as an Aharonov-
Bohm phase due to some gauge field that is generated by the flux bound to the
charges included in a closed loop ∂Σ. This closed loop, around which a quasi-particle
moves adiabatically, encloses a surface Σ. The gauge field is not to be confunded with
the one which generates the true magnetic field B – it is rather a mock (or fake) field
AM (with BM = ∇ × AM ) that generates the flux bound, e.g., by the electrons in
the Laughlin liquid via the relation (4.4). We consider the case where the area Σ is
filled with Nel(Σ) electrons condensed in an incompressible quantum liquid described
by Laughlin’s wave function (4.3) and Nqh(Σ) quasi-hole excitations (4.12), such that
there are two contributions to BM = |BM |,

BMΣ = Nflux
h

e
= [mNel(Σ) +Nqh(Σ)]

h

e
. (4.26)

The corresponding Aharonov-Bohm phase, which the quasi-particle picks up when
turning around the area Σ on the boundary path ∂Σ, is given by

ΓA−B = 2π
e∗

h

∮

∂Σ

dr · AM (r) = 2π
e∗

h

∫

Σ

d2r BM (r),

where e∗ = e/m is the charge of the quasi-particle and where we have used Stoke’s
theorem to convert the line integral of AM on ∂Σ into a surface integral of BM over
the area Σ. The Aharonov-Bohm phase has therefore two contributions, one Γel that
stems from the electrons condensed in the Laughlin liquid and the other one Γqh that
is due to the enclosed quasi-holes. One obtains from Eq. (4.26)

Γel = 2π
e∗

e
mNel = 2πNel, (4.27)

for the enclosed electrons, i.e. an integer times 2π. Notice that this contribution to the
Aharonov-Bohm phase may not be interpreted in terms of a statistical angle because
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it does not describe a true exchange process: the involved particles are not of the
same type – we have chosen a quasi-particle to move on a path enclosing condensed
electrons. However, had we chosen an electron rather than a quasi-hole to move along
the path ∂Σ, the Aharonov-Bohm phase,

Γel−el = 2π
e

e
mNel(Σ),

would give rise to a statistical angle α = mNel(Σ).17 If we have only one electron
enclosed by the path, Nel(Σ) = 1, the statistical angle is simply the odd integer m,
which is equal to 1 (modulo 2), as it should be for fermions.

A more interesting situation arises when the path encloses Laughlin quasi-holes, in
which case the Aharonov-Bohm phase reads

Γel = 2π
e∗

e
Nqh = 2π

Nqh

m
. (4.28)

Consider a single quasi-hole in the area Σ, Nqh = 1: one encounters the rather unusual
situation in which the Aharonov-Bohm phase is a fraction of 2π, and the associated
statistical angle is α = 1/m. This illustrates that Laughlin quasi-holes are indeed
anyons with fractional statistics, as we have argued above.

4.4 Generalisations of Laughlin’s Wave Function

Although Laughlin’s wave function (4.3) has been extremely successful in the descrip-
tion of the FQHE at ν = 1/3 and 1/5, it is not capable of describing all observed
FQHE states. Indeed, there are e.g. FQHE states at ν = 2/5, 3/7, 4/9, ... correspond-
ing to the series p/(2p+ 1), or more generally to p/(2sp+ 1), in terms of the integers
s and p, which may be accounted for within composite-fermion (CF) theory, which we
present below. Furthermore, even-denominator FQHE states have been observed at
ν = 5/2 and 7/2 (Willett, Eisenstein, Stormer, Tsui, Gossard and English, 1987), in
the first excited LL (n = 1), and, in wide quantum wells or bilayer quantum Hall sys-
tems, at ν = 1/2 and ν = 1/4 (Luhman, Pan, Tsui, Pfeiffer, Baldwin and West, 2008;
Shabani, Gokmen and Shayegan, 2009). Whereas the latter may be understood within
a multi-component picture, which we will briefly introduce in Chap. 5, the states at
ν = 5/2 and 7/2 may find their explanation in terms of a so-called Pfaffian wave func-
tion. Both the CF and the Pfaffian wave functions are sophisticated generalisations of
Laughlin’s original idea.

4.4.1 Composite Fermions

Soon after the discovery of the most prominent FQHE state at ν = 1/3, a lot of other
states have been observed at the filling factors ν = p/(2sp + 1). In a first theoret-
ical approach, these states were interpreted in the framework of a hierarchy scheme
(Haldane, 1983; Halperin, 1984) according to which the quasi-particles of the Laughlin

17Remember that the statistical angle is defined with respect to an exchange process E which is the
square root of the process T considered here [Eq. (4.21)]. The relation between the statistical angle
and the Aharononv-Bohm phase is therefore Γ = 2πα and not πα.
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with 2s (bound) flux quanta
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Fig. 4.6 Schematic view of composite fermions. The electronic state at ν = 1/3 may be

interpreted as a CF state at an integer CF filling factor ν∗ = 1, where each vortex bound to

an electron carries 2s (here s = 1) flux quanta. In the same manner a CF filling factor ν∗ = 2

gives rise to an (electronic) FQHE state at ν = 2/5.

(parent) state, such as ν = 1/3, condense themselves into a Laughlin-type (daughter)
state, due to their residual Coulomb repulsion – remember that the Laughlin quasi-
particles are charged with charge e∗ = e/m. In this picture, the 2/5 state would be
the daughter state formed of Laughlin quasi-particle excitations of the 1/3 state.

An alternative picture, though related to the above-mentioned hierarchy scheme,
was proposed by Jain in 1989 (Jain, 1989; Jain, 1990). The basic idea consists of a
reinterpretation of Laughlin’s wave function (4.3): consider only the polynomial part,

the Gaussian exp(−∑N
j |zj|2/4) being an ubiquitous factor which finally needs to be

multiplied with the polynomial wave function,

ψL
m ({zj}) =

∏

k<l

(zk − zl)
2s+1 =

∏

k<l

(zk − zl)
2s
∏

k<l

(zk − zl). (4.29)

In the last step of this equation, we have split the product into two parts, one with
the exponent 2s, which we call the vortex part, and another one with the exponent 1.

Before introducing Jain’s generalisation, let us interpret the above wave function
in terms of the statistical properties introduced in the last section. Quite generally,
one may express any LLL N -particle wave function ψLLL as a product of such a vortex
factor and another (residual) wave function ψres,

ψLLL ({zj}) =
∏

k<l

(zk − zl)
m′

ψres ({zj}) .

If the original wave function is fermionic, i.e. anti-symmetric with respect to an ex-
change process of an arbitrary particle pair, the symmetry properties of ψres depend
on the parity of m′. If it is odd, ψres must be a symmetric (bosonic) wave function,
and if it even, both the original and the residual wave functions are anti-symmetric
(fermionic). In terms of the above-mentioned gauge field AM (r), the statistical an-
gle associated with the vortex factor is just given by the parity of m′, which may be
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viewed as the number of flux quanta attached to each particle at the positions zj. Flux
attachment may thus be used, in 2D quantum mechanics, to transform fermions into
bosons and vice versa.

In the case of the above decomposition (4.29) of Laughlin’s wave function, the
vortex part attaches s pairs of flux quanta to each particle position and therefore does
not affect the statistical properties of the wave function. The second factor

χν∗=1({zj}) =
∏

k<l

(zk − zl)

is indeed fermionic and corresponds, as we have mentioned in Sec. 4.2.1, to a completely
filled LL at a virtual (CF) filling factor of ν∗ = 1, the true filling factor being still
ν = 1/(2s+ 1). This is schematically represented in Fig. 4.6.

Jain’s generalisation consists of replacing the term
∏

k<l(zk − zl) by any other
Slater determinant χν∗=p({zj, z

∗
j }) of p completely filled LLs, with a CF filling factor

ν∗ = p,

ψJ({zj, z
∗
j }) = PLLL

∏

k<l

(zk − zl)
2s
χν∗=p({zj , z

∗
j }), (4.30)

where we need to take into account the same projection PLLL to the LLL as in the
case of quasi-particle excitations (4.15) because, contrary to the ν∗ = 1 case, the wave
function χν∗=p({zj, z

∗
j }) has by construction non-analytic components, i.e. components

in higher (CF) LLs.
Jain’s wave function (4.30) may be illustrated in the following manner. Via the

first factor
∏

k<l(zk − zl)
2s, we have effectively bound 2s flux quanta to each of the

electrons, as we have already mentioned above. This novel type of particle is what we
call the composite fermion (CF). The residual (free) flux quanta effectively determine
the effective number of states per (CF) LL,

NB → N∗
B = NB − 2sNel,

which correspond to a renormalised magnetic field

B → B∗ = B − 2s

(

h

e

)

nel. (4.31)

Similarly the CF filling factor is defined with respect to the renormalised number of
flux quanta,

ν∗ =
Nel

N∗
B

⇒ ν∗−1 = ν−1 − 2s, (4.32)

which leads to the relation

ν =
ν∗

2sν∗ + 1
(4.33)

between the CF filling factor and the usual one ν [Eq. (2.44)]. For completely filled
LLs, ν∗ = p, this yields the above-mentioned series

ν =
p

2sp+ 1
(4.34)

for the FQHE states which may thus be interpreted as IQHE states of CFs. To be
explicit, the physical picture of CF theory is the following: the ground state is described
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by the wave function (4.30), which describes an incompressible quantum liquid in the
same manner as Laughlin’s wave function does. The elementary excitation in the
CF theory consists of a CF promoted to the next higher CF LL, which is separated
from the ground state by an energy gap, in analogy with the electron as compared
to n completely filled (electronic) LLs in the IQHE.18 Again, these elementary CF
excitations become localised by the sample impurities, and one therefore obtains a
plateau in the Hall resistance which is thus quantised.

Numerically, Jain’s CF wave function (4.30) has been successful in the descrip-
tion of the series (4.34) of FQHE states: even if the overlap with the exact ground
states decreases when the quantum number p, which describes the number of com-
pletely filled CF LLs, increases, the overlap is still reasonably high (above 90%) for
the number of particles accessible in state-of-the-art exact diagonalisation calcula-
tions. Notice, however, that the physical interpretation is more involved as compared
to Laughlin’s wave function, because of the LLL projection PLLL, which is rather
complicated to implement in analytical as well as numerical calculations. For a fur-
ther review of CF theory, we refer the interested reader to the literature. The above-
mentioned wave-function approaches are thoroughly reviewed in Jain’s recent book
(Jain, 2007). Furthermore, there have been field-theoretical approaches beyond the nu-
merical wave-function description presented above, such as in terms of Chern-Simons
theories (Lopez and Fradkin, 1991; Halperin, Lee and Read, 1993) or in terms of a
Hamiltonian theory (Murthy and Shankar, 2003). For a review of these complemen-
tary theories we refer the reader to the book edited by Heinonen (Heinonen, 1998) or
the excellent pedagogical review by Murthy and Shankar (Murthy and Shankar, 2003).

4.4.2 Half-filled LLs and Pfaffian states

Within the CF picture, we have seen that the effective magnetic field becomes renor-
malised due to flux attachment [Eq. (4.31)]. An interesting situation arises when the
filling factor is ν = 1/2, which corresponds to the limit p → ∞ in Eq. (4.34). In this
limit the effective magnetic field (4.31) vanishes, B∗ = 0, and one may then expect
the corresponding phase to be described in terms of a metallic state, such as a Fermi
liquid that one would obtain for electrons when the magnetic field vanishes. A natural
ansatz for the N -particle wave function of such a Fermi-liquid state is given by the
Slater determinant

ψFL = det
(

eiki·rj
)

,

where the N electrons occupy the states described by the wave vectors k, i = 1, ..., N ,
the modulus of which is delimited by the Fermi wave vector |ki| ≤ kF , and rj is the
position of the j-th particle. Notice that this state is nevertheless unappropriate in
the description of a state in the LLL. Indeed, if the scalar product in the exponent is
rewritten in terms of complex variables, ki · rj = (kiz

∗
j + k∗i zj)/2, one realises that the

Fermi-liquid state violates the LLL condition of analyticity. Formally, one may again
avoid this problem by projecting the Fermi-liquid state into the LLL, and one obtains
indeed a state,

18Remember, however, that the energy scale of this gap is not given in terms of a kinetic energy
h̄eB/m, but in terms of the Coulomb interaction e2/ǫlB .
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ψ

ν=1/2
FL = PLLL

∏

k<l

(zk − zl)
2
det
(

eiki·rj
)

, (4.35)

that was proposed by Rezayi and Read for the description of a compressible metallic
state at ν = 1/2 (Rezayi and Read, 1994). The first term is the same factor as in
CF theory, which attaches 2 flux quanta to each particle and which cancels thus the
external magnetic field, B∗ = B − 2(h/e)nel = 0.

Because the wave function (4.35) describes a compressible state, one should not
observe a quantised Hall resistance, in agreement with most experimental data. A
FQHE at ν = 1/2 (and 1/4) has only been observed in very wide quantum wells
(Luhman, Pan, Tsui, Pfeiffer, Baldwin and West, 2008; Shabani, Gokmen and Shayegan, 2009),
which are likely to be described by two-component wave functions (Papić, Möller, Milovanović, Regnault and Goerbig,
that we will briefly introduce in Chap. 5.

In contrast to the LLL, the half-filled LL n = 1 reveals, in both spin branches,
a FQHE (5/2 and 7/2 states). The difference between the half-filled LL n = 0 and
n = 1 is due to a different effective interaction potential that takes into account the
wave function overlap between two (interacting) particles, which we do not discuss in
detail here. Indeed, the Fermi-liquid-like state (4.35) turns out to be quite unstable
with respect to particle pairing. This is reminiscent of the BCS (Bardeen-Cooper-
Schrieffer) instability of a conventional Fermi liquid that gives rise to superconductivity
(Mahan, 1993; Tinkham, 2004), although the glue between the particles is no longer a
phonon-mediated attractive interaction, but only the repulsive Coulomb interaction in
a strong magnetic field. As we have already mentioned in Sec. 4.2.2, such an interaction
may yield a discrete two-particle spectrum, in contrast to a repulsive interaction in the
absence of a magnetic field. As a consequence, pairing may occur at certain relative
angular momenta for particular pseudopotential sequences and for sufficiently high
filling factors.19 In the present case, one may exclude s-wave pairing, i.e. in the relative
angular momentum state with m = 0 due to the Pauli principle, and the most natural
candidate would therefore be p-wave pairing in the relative angular momentum state
m = 1 (Greiter, Wen and Wilczek, 1991).

A wave function that accounts for p-wave pairing was proposed by Moore and Read
in 1991 (Moore and Read, 1991),

ψMR ({zj}) = Pf

(

1

zi − zj

)

∏

k<l

(zk − zl)
2, (4.36)

where we have again omitted the ubiquitous Gaussian factor. As for the CF wave
functions (4.30) and the Rezayi-Read wave function (4.35), the factor

∏

k<l(zk − zl)
2

attaches two flux quanta to each electron and therefore does not change the statistical
properties of the wave function. If the wave function consisted only of this factor
(times the Gaussian), one would have a bosonic Laughlin wave function that describes
an incompressible quantum liquid at the desired filling factor ν = 1/2. However, it does
not have the correct statistical properties. This problem is healed by the first factor
Pf[1/(zi − zj)] which represents the Pfaffian of the N ×N matrix Mij = 1/(zi − zj).

19There have been attempts in the literature to formalise this point (Haldane and Rezayi, 1985;
Wójs and Quinn, 2000).
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The Pfaffian may be viewed as the square root of the more familiar determinant,
Pf(M) =

√

det(M), and has the same anti-symmetric properties as the determinant
in an exchange of two particles i and j, such that it generates a fermionic wave function.
Notice, furthermore, that this Pfaffian seems, at first sight, to take away some of the
zeros such that one could expect the filling factor to increase. However, the function
∏

k<l(zk − zl)
2 is a product of N(N − 1) ∼ N2 terms, whereas the Pfaffian is a sum

of products of N/2 ∼ N terms. Therefore, the number of zeros, and thus the filling
factor, is unchanged in the thermodynamic limit, N → ∞.

A particularly interesting feature of the Pfaffian state are the quasi-particle excita-
tions of charge e/4 which satisfy non-Abelian anyonic statistics (Moore and Read, 1991),
in contrast to the corresponding excitations of Laughlin’s (4.3) or Jain’s (4.30) wave
functions. These non-Abelian quasi-particles are currently investigated in detail within
the proposal of topologically-protected quantum computation (Kitaev, 2003). A more
detailed discussion of this issue is beyond the scope of these lecture notes, and we refer
the reader to the review article by Nayak et al. (Nayak, Simon, Stern, Friedman and Das Sarma, 2008).



5

Brief Overview of Multicomponent
Quantum-Hall Systems

5.1 The Different Multi-Component Systems

5.1.1 The role of the electronic spin

In the preceding chapters, we have completely neglected the physical consequences of
possible internal degrees of freedom, apart from an occasional degeneracy factor that
has been smuggled in to account for experimental data. This choice has been made
simply for pedagogical reasons, but it is clear that one prominent internal degree of
freedom – the electronic spin – may not be put under the carpet so easily. Naively,
one may expect that each LL is split into two distinct spin-branches separated by
the energy gap ∆Z due to the Zeeman effect. If this gap is large, one may use the
same one-particle arguments as in the case of the IQHE, but now for each spin branch
separately: once the lowest spin branch of a paticular LL is completely filled, additional
electrons must overcome an energy gap that is no longer given by the LL separation
but by ∆Z . This would indeed not change the presented explanation of the IQHE
– instead of a localised electron in the next higher LL, one simply needs to invoke
localisation in the upper spin branch.

Also in the case of the FQHE, the explanation would need to be modified only in
the fine structure if the Zeeman gap is sufficiently large. If the electrons fill partially
the lower spin branch of the lowest (or any) LL, one may omit all transitions to the
upper spin branch and argue that they constitute the high-energy degrees of freedom,
in the same manner as inter-LL excitations in the case of the “spinless” fermions which
we have discussed in Sec. 4.1.

However, the situation is not so easy as the above picture might suggest. Indeed,
already in 1983 Halperin pointed out (Halperin, 1983) that the Zeeman gap in GaAs,
with a g-factor of g = −0.4, is ∆Z = gµBB = g(h̄e/2m0)B ≃ 0.33B[T] K and therefore
much smaller than both the LL separation h̄ωC = (h̄e/m)B ≃ 24B[T] K, due to the
rather small band mass (m = 0.068m0, in terms of the bare electron mass m0, in
GaAs), and the Coulomb energy scale VC = e2/ǫlB ≃ 50

√

B[T] K with a dielectric
constant of ǫ ≃ 13. For a characteristic field of 6 T, for which one typically reaches
the LLL condition ν = 1, one therefore has the energy scales

∆Z ≃ 2 K ≪ e2

ǫlB
≃ 120 K <∼ h̄ωC ≃ 140 K, (5.1)
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in GaAs. The situation is qualitatively the same in graphene, where one finds for a
field1 of 6 T

∆Z ≃ 7 K ≪ e2

ǫlB
≃ 620 K <∼

√
2
h̄v

lB
≃ 1000 K, (5.2)

for g ≃ 2 and ǫ ≃ 2.5, which are the appropriate values for graphene on a SiO2

substrate.2

The inevitable consequence of these considerations is that, even if one may neglect
the kinetic energy scale in a low-energy description of a partially filled LL, one cannot
do so with the Zeeman energy scale. One must therefore take into account the electron
spin within a two-component picture in which each quantum state |n,m〉 is doubled,
|n,m;σ〉 with σ =↑ and ↓.

5.1.2 Graphene as a four-component quantum Hall system

Another multi-component system that we have already discussed is precisely graphene,
not only because of the tiny Zeeman gap which requires to take into account the elec-
tronic spin, but also because of its double valley degeneracy due to the two inequivalent
Dirac points situated at the corners K and K ′ in the first BZ. Each quantum state
|n,m〉 therefore occurs in four copies, |n,m;σ〉 with σ = (K, ↑), (K, ↓), (K ′, ↑) and
(K ′, ↓). Formally this four-fold degeneracy may be described with the help of an SU(4)
spin, whereas the two-fold spin degeneracy in GaAs, e.g., is represented by the usual
SU(2) spin. Notice that it is very difficult in graphene to lift the valley degeneracy,
and the associated energy scale is expected to be on the same order of magnitude as
the Zeeman gap, i.e. it is tiny with respect to the one set by the Coulomb interactions.

5.1.3 Bilayer quantum Hall systems

A third multi-component system that we would like to mention consists of a dou-
ble quantum well [see Fig. 5.1(a)]. These bilayer systems, which are fabricated by
molecular-beam epitaxy, consist of two quantum wells spatially separated by an insu-
lating barrier that is on the same order of magnitude as the width of each of the wells.
Formally, each of the wells (layers) may be described in terms of an SU(2) pseudo-spin,
σ =↑ for an electron in the left well and σ =↓ for one in the right well. In contrast to
the true electron spin, the Coulomb interaction does not respect this SU(2) symmetry
– indeed, the repulsion is stronger between particles within the same layer (i.e. with the
same pseudo-spin orientation) than between particles in different layers (with oppo-
site pseudo-spin orientation) because, in the second case, electrons may not be brought
together closer than the distance d between the layers. In order to minimise the inter-
action energy, it is therefore favourable to charge both layers equally. Alternatively,
this may be viewed as some capacitive energy, if one interprets the two-layer system
in terms of a capacitor, that favours an equal charge distribution between the two
layers as compared to a charging of only one layer. Notice, furthermore, that tunnel-
ing, with the tunneling energy t, between the two quantum wells lifts the pseudo-spin

1Remember that this field is somewhat arbitrary because the situation ν = 1 may also be obtained
easily for other fields by varying the gate voltage VG.

2Naturally, the dielectric constant depends on the dielectric environment around the graphene
sheet and thus also on the substrate.
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Fig. 5.1 (a) Profile of a double quantum well. The two wells are separated by a distance d

that is typically on the same order of magnitude as the well width W , d ∼ W ∼ 10 nm. In

the presence of a tunneling term t between the two wells, the electronic subband is split into

a symmetric and an anti-symmetric combination, separated by the energy scale ∆SAS = 2t.

(b) Wide quantum well. In a wide quantum well the energy gap between the occupied lowest

electronic subband and the unoccupied first excited subband, ∆sb, is decreaased as compared

to a narrow quantum well.

degeneracy: whereas the symmetric superposition |+〉 = (| ↑〉 + | ↓〉)/
√

2 of the layer
pseudo-spin lowers the energy, the anti-symmetric superposition |−〉 = (| ↑〉−| ↓〉)/

√
2

describes anti-binding. The energy separation between the associated subbands is given
by ∆SAS = 2t [see Fig. 5.1(a)], but it may be strongly reduced experimentally with the
help of a high potential barrier separating the two wells. The term ∆SAS , which plays
the role of a Zeeman gap (though in the x-quantisation axis), may become the lowest
energy scale in the system, such that the SU(2) pseudo-spin symmetry breaking only
stems from the difference in the Coulomb interaction between particles in the same
and in different layers.

5.1.4 Wide quantum wells

Another quantum Hall system that may be characterised as a multi-component sys-
tem is a wide quantum well [Fig. 5.1(b)]. Indeed, the samples which reveal the highest
mobilities are those fabricated in wide quantum wells, where the well width w is often
much larger than the magnetic length lB. As compared to a narrow quantum well, the
energy difference between the lowest and the first excited electronic subbands, which
are the energy levels of the confinement potential in the z-direction, is strongly de-
creased. Although the Fermi level still resides in the lowest electronic subband (pseudo-
spin σ =↑), the energy gap to the next unoccupied one (pseudo-spin σ =↓) may then
become smaller than the relevant Coulomb energy scale. In the same manner as for
the electronic spin, one must therefore no longer discard higher electronic subbands.
In a first approximation one may restrict the calculations to these two lowest subbands
(Abolfath, Belkhir and Nafari, 1997; Papić, Möller, Milovanović, Regnault and Goerbig, 2009)
although the next higher subbands also shift to lower energies and need eventually be
taken into account. Similarly to the quantum-Hall bilayer, which is sometimes also used
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in the description of the large quantum well, the Coulomb interaction decomposed in
these electronic subband states is not pseudo-spin SU(2)-symmetric.

In the remainder of this chapter, we discuss some aspects of correlated states that
one encounters in multi-component quantum Hall systems in general, starting (Sec.
5.2) with the completely spin-polarised state at ν = 1 (quantum Hall ferromagnet)
and its various manifestations in the different quantum Hall systems described above.
We will not discuss, for reasons of space limitation, the amazing physical properties
of the elementary excitations of the quantum Hall ferromagnet, which is a topolog-
ical spin-texture state (skyrmion), and refer the interested reader to the literature
(Sondhi, Karlhede, Kivelson and Rezayi, 1993; Moon, Mori, Yang, Girvin, MacDonald, Zheng, Yoshioka and Zhang,
Ezawa, 2000). In the line of the preceding chapter, we have chosen to discuss a gen-
eralisation of Laughlin’s wave function, which we owe to Halperin (Halperin, 1983),
in order to account for the electronic spin (Sec. 5.3). These wave functions are fur-
ther generalised to even more components than two, and we close this section with a
discussion of their possible use in the description of multi-component FQHE states.

5.2 The State at ν = 1

If one takes into account internal degrees of freedom, the state at ν = 1 is no longer
simply a Slater determinant of all occupied quantum states in the lowest LL, but one
must take into account the macroscopic degeneracy due to the fact that each state
|n,m〉 may now be occupied by 0, 1 or 2 particles. In this sense the situation at ν = 1
is much more similar to the FQHE in a partially filled LL than to the IQHE which
one obtains for completely filled LL (Sondhi, Karlhede, Kivelson and Rezayi, 1993),
and the macroscopic degeneracy is again lifted by the mutual Coulomb interactions
between the electrons.

5.2.1 Quantum Hall ferromagnetism

We first consider the generic case of electrons at ν = 1 in the conventional monolayer
quantum Hall system while taking into account their physical spin. In view of the
above-mentioned energy arguments, we completely neglect the Zeeman effect, which
would otherwise trivially lift the macroscopic degeneracy at ν = 1 by polarising all
electron spins. Because of the fact that two electrons, with opposite spin, may now
occupy the same quantum state |n,m〉, the electron pair may in principle be in a
relative angular momentum state with m = 0 – the Pauli principle, which only applies
to fermions of the same species, does no longer prevent this quantum number to
be odd. Indeed, such an electron pair is described by a two-particle wave function
with the rather unspectacular polynomial factor (zi,↑ − zj,↓)

0 = 1, where zi,↑ is the
position of an arbitrarily chosen spin-↑ electron and zj,↓ that of a spin-↓ electron.
Such an electron pair therefore interacts via the Haldane pseudopotential v0, which
is the largest pseudopotential in the case of a repulsive Coulomb interaction because
it characterises the interaction at the shortest possible length scale (see Fig. 4.2).3

3This pseudopotential, as well as any other with an even value of m, does not play any physical
role due to the Pauli principle if one considers only spinless electrons, as we have mentioned in Sec.
4.2.2.
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Since v0 ≃ 2v1, the system thus tends to avoid double occupancy, and the ground
state is described by the fully anti-symmetric (orbital) wave function (4.7) regardless
of whether the electron at the position zj is spin-↑ or spin-↓.

Notice that, although both spinless and spin-1/2 electrons are described by the
same wave function, the physical origin of these ground states is different: in the case
of spinless fermions, it is simply the non-degenerate wave function described by a
Slater determinant, whereas in the case of electrons with spin, the state is formed in
order to minimise the mutual Coulomb repulsion.

Because the orbital wave function (4.7) for electrons with spin at ν = 1 is fully
anti-symmetric, the spin wave function describing the internal degrees of freedom must
be fully symmetric, e.g.

χFM = | ↑1, ↑2, ..., ↑N〉, (5.3)

in order to form an overall wave function that is anti-symmetric. The subscript in-
dicates the index of the particle that the spin is associated with. The global wave
function, therefore, reads

ψν=1,FM =
∏

k<l

(zk − zl) ⊗ | ↑1, ↑2, ..., ↑N〉. (5.4)

This is nothing other than a (spin) wave function of a quantum ferromagnet, similar
to ferromagnetism in a usual Fermi liquid. Indeed, the spontaneous spin polarisation
in a Fermi liquid is also due to a minimisation of the Coulomb repulsion by the
formation of an anti-symmetric orbital wave function. Notice, however, that the spin
polarisation in a Fermi liquid comes along with an energy cost as a consequence of the
mismatch between the Fermi energies of spin-↑ and spin-↓ electrons. The competition
between the gain in interaction energy and the cost in kinetic energy determines the
final polarisation of the system, which is never perfect. In the case of the quantum
Hall ferromagnet, there is no cost in kinetic energy when the system is fully polarised
because all quantum states have the same kinetic energy, and the system is therefore
fully polarised.

Collective excitations. Because the spontaneous spin polarisation in the quantum
Hall ferromagnet chooses, in the absence of a Zeeman effect, an arbitrary direction in
the three-dimensional spin space, one is confronted with a spontaneous SU(2) sym-
metry breaking. As a consequence of this broken continuous symmetry, there exists a
gapless collective excitation (Goldstone mode) the energy of which tends to zero in the
long wave-length limit. Indeed, even if we have chosen the ferromagnet in Eq. (5.3) to
be oriented in the z-direction, any other orientation, such as the one described by the
wave function

| ↓1, ↓2, ..., ↓N 〉 or
N
⊗

j=1

|+j〉 = |+1,+2, ...,+N 〉,

where the +j sign indicates the symmetric superposition |+j〉 = (| ↑j〉 + | ↓j〉)/
√

2 of
both spin orientations of the j-th electron, would also describe a ground state. The
Goldstone mode in the large wave-length limit may then be viewed as a global rotation
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of all spins into another ground-state configuration, which naturally does not imply
an energy cost.

In the case of a ferromagnet, the Goldstone mode is nothing other than the spin-
density wave4 that disperses as ω ∝ q2 in the small wave vector limit, qlB ≪ 1. At first
sight, this mode seems in contradiction with the observation of a quantum Hall effect
at ν = 1, even in the absence of a Zeeman effect, which requires a gap as we have seen
above. Notice, however, that this gap needs to be a transport gap in which a quasi-
particle moves independently from a quasi-hole in order to transport a current. This is
not the case in a spin wave with qlB ≪ 1, but one obtains freely moving quasi-particles
and quasi-holes in the limit qlB ≫ 1. In this limit, the spin-wave dispersion tends to a
finite value that is given by the exchange energy between particles of different spin ori-
entation and that is proportional to the interaction energy scale e2/ǫlB, as in the case of
the FQHE (Moon, Mori, Yang, Girvin, MacDonald, Zheng, Yoshioka and Zhang, 1995).

There are more exotic spin-texture excitations (skyrmions), which are described by
a topological quantum number associated with the winding of the spin-texture. These
are gapped excitation which carry an electric charge related to this topological quan-
tum number. As mentioned above, a detailed discussion of these amazing excitations
is beyond the scope of the present lecture notes.

5.2.2 Exciton condensate in bilayer systems

The ν = 1 in a bilayer system is remarkably different from the quantum Hall fer-
romagnet described in the preceding subsection. Although the electronic interactions
still favour a fully anti-symmetric orbital wave function (4.7) and thus a symmetric,
i.e. ferromagnetic, pseudo-spin wave function, the interaction potential is no longer
SU(2) symmetric in the pseudo-spin degree of freedom.5 As we have already mentioned
above, a charge imbalance Q between the two quantum wells (layers) is penalised by
a charging energy, EC = Q2/2C, in terms of the capacitance C = ǫA/d, where A is
the area of the 2D system. Because Q = −eνnelA = −eνnBA = −eνA/2πl2B when all
electrons reside in a single layer and Q = 0 if they are equally distributed between the
two layers, one obtains an energy cost

EC

Nel
∼ ν

e2

ǫlB

d

lB
,

per particle in the charge-imbalenced state, in agreement with a more sophisticated mi-
croscopic calculation (Moon, Mori, Yang, Girvin, MacDonald, Zheng, Yoshioka and Zhang, 1995).
In terms of the pseudo-spin magnetisation, this means that in the ground-state config-
uration, with a homogeneous charge distribution over both layers, all pseudo-spins are
oriented in the xy-plane. Remember that a pseudo-spin ↑ corresponds to an electron
in the upper layer and ↓ to one in the lower layer, and a configuration as the one de-
scribed in Eq. (5.3) is therefore excluded, whereas the symmetric and anti-symmetric
combinations

4Remember that for a crystaline ground state (WC), the Goldstone mode is the acoustic phonon,
as we have briefly discussed in the previous chapter in Sec. 4.1.

5 Naturally, such an anti-symmetric orbital wave function is only physical if the layer separation d
is not too large (as compared to the magnetic length) – otherwise one would simply have completely
decoupled layers.



The State at ν = 1 83
χ+ =

N
⊗

j=1

|+j〉 and χ− =

N
⊗

j=1

|−j〉,

with |±j〉 = (| ↑j〉 ± | ↓j〉)/
√

2 is not. These two states, which correspond to a fer-
romagnet in the x- and the y-direction, respectively, may be generalised by choosing
any other direction described by the angle φ in the xy-plane,

χφ =
N
⊗

j=1

|φj〉, (5.5)

where |φj〉 ≡ [| ↑〉 + exp(iφ)| ↓〉]/
√

2. The states χ+ and χ− are obtained for φ = 0
and φ = π (modulo 2π), respectively.

Contrary to the case of the spin ferromagnet with full SU(2) symmetry, where a
general state would be described in terms of two angles θ and φ, the different pos-
sible easy-plane pseudo-spin ferromagnetic are characterised by the angle φ which
may vary between 0 and 2π. The low-energy degrees of freedom are therefore de-
scribed by a different universality class that turns out to be the same as the one
that describes superfluidity or superconductivity. The relation between superfluid-
ity and the easy-plane pseudo-spin ferromagnet in bilayer systems at ν = 1 may
indeed be understood in the following manner: on the average, the average filling
factor per layer is ν↑ = ν↓ = 1/2 in order to minimise the charging energy due to
the capacitive term, i.e. there are as many electrons as holes in the LLL of each
layer. Naturally, because of the Coulomb interaction between the particles in the
two different layers, an electron in one layer wants to be bound to a hole in the
other one. Since the number of electrons in each layer equals, on the average, that
of holes in the other one, all particles find their appropriate partner in the opposite
layer. The electron-hole pair in the two layers may be viewed as a charge-neutral
interlayer exciton that satisfies bosonic statistics [Fig. 5.2(a)]. Below a certain tem-
perature, these bosons condense into a collective state that is nothing other than
the exciton superfluid (Fertig, 1989; Wen and Zee, 1992; Ezawa and Iwazaki, 1993;
Moon, Mori, Yang, Girvin, MacDonald, Zheng, Yoshioka and Zhang, 1995). The phase
coherence between the different excitons is precisely described by the angle φ.

The first experimental indication of excitonic superfluidity in bilayer quantum Hall
systems was a zero-bias anomaly in tunneling experiments (Spielman, Eisenstein, Pfeiffer and West, 2000).
Indeed, if one injects a charge in a tunneling experiment into one of the layers and
collects it in a contact at the other layer, the tunneling conductance dIz/dV is ex-
pected to be weak in the case of uncorrelated electrons because of the Coulomb re-
pulsion between electrons in the opposite layers. However, below a critical value of
d/lB, where one expects the interlayer correlations to be sufficiently strong to form a
phase-coherent excitonic condensate, the injected electron systematically finds a hole
in the other layer, such that tunneling between the layers is strongly enhanced. This
strong enhancement, which due to its reminiscence with the Josephson effect in su-
perconductors (Tinkham, 2004) is also called quasi-Josephson effect,6 has indeed been

6Contrary to the Josephson effect, only the tunneling conductance dIz/dV is strongly enhanced
whereas the tunneling current remains zero in the quasi-Josephson effect in bilayer systems.
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Fig. 5.2 Hall resistance measurement used to detect excitonic condensation, adopted from

(Eisenstein and MacDonald, 2004). (a) Counterflow configuration, in which one drives a

current I↑ = I through the upper layer that is flowing in the opposite direction as that,

I↓ = −I in the lower layer. The hole component of the excitonic quantum state in one layer

thus moves in the same direction as the electron component in the other one. (b) The two

curves schematically represent, when taking into account only excitonic superfluidity, the Hall

resistance in both layers within the counterflow configuration. Because of the relative sign

between the currents in the two layers, the measured Hall resistances are of opposite sign.

Electrons with no interlayer correlations yield the usual linear B-field dependence of the Hall

resistance in order to compensated the Lorentz force acting on them individually. In the case

of exciton condensation (around B = 5 T), charge tranport is due to a uniform current of

charge-neutral excitons, which are not affected by the Lorentz force, and the Hall resistance

vanishes, as it has been observed in the experiments (Kellogg et al., 2004; Tutuc et al., 2004).

observed experimentally (Spielman, Eisenstein, Pfeiffer and West, 2000).
Another strong indication for excitons in bilayer quantum Hall systems stems from

transport measurements in the counterflow configuration, where the current in the
upper layer I↑ = I flows in the opposite direction as compared to that in the lower
layer I↓ = −I [see Fig. 5.2(a)]. From a technical point of view, it is indeed possible
to contact the two layers separately such that one may measure the Hall resistance
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(and also the longitudinal resistance) in both layers independently. In the case of ex-
citon condensation, the charges involved in transport are zero because the excitons
are charge-neutral objects, which are not coupled to the magnetic field and thus not
affected by the Lorentz force. In addition to a vanishing longitudinal resistance, one
would therefore expect a vanishing Hall resistance because no density gradient be-
tween opposite edges is built up to compensate the Lorentz force (Wen and Zee, 1992;
Ezawa and Iwazaki, 1993). This is schematically shown in Fig. 5.2(b). The simulta-
neous vanishing of the Hall and longitudinal resistances was indeed observed in 2004
by two different experimental groups (Kellogg, Eisenstein and an K. W. West, 2004;
Tutuc, Shayegan and Huse, 2004).

5.2.3 SU(4) ferromagnetism in graphene

The arguments in favour of a quantum Hall ferromagnetism may easily be generalised
to the case of graphene, where the Coulomb interaction respects to great accuracy
the four-fold spin-valley degeneracy, as we have described above. In order to avoid
confusion about the filling factor, one first needs to remember that the filling factor
νG in graphene is defined with respect to the charge-neutral point, which happens to
be in the centre of the central n = 0 LL (see Sec. 3.5). Two of the four (degenerate)
spin-valley branches are therefore completely filled at νG = 0, which in non-relativistic
quantum Hall systems would correspond rather to a filling factor ν = 2. Similarly the
filling factor ν = 1 would correspond to a graphene filling factor νG = −1, whereas
νG = 1 implies three completely filled spin-valley branches (ν = 3).

Let us first consider the filling factor νG = −1 and see how the above consid-
erations apply to graphene with its SU(4) symmetry.7 In the same manner as for
the spin quantum Hall ferromagnet at ν = 1, the short-range component v0 of the
Coulomb potential is screened in the completely anti-symmetric orbital wave function
(4.7), and the spin part of the wave function must therefore be completely symmet-
ric. Notice, however, that one may now distribute the electron over the four internal
states |m;K, ↑〉, |m;K, ↓〉, |m;K ′, ↑〉 and |m;K ′, ↓〉. The general spin wave function is
therefore a superposition of all these states

χSU(4) =
N
⊗

m=1

(um,1|m;K, ↑〉 + um,2|m;K, ↓〉 + um,3|m;K ′, ↑〉 + um,4|m;K ′, ↓〉) ,

(5.6)

where the complex coefficients um,i satisfy the normalisation condition
∑4

i=1 |um,i|2 =
1. In the case of global coherence, all coefficients are independent of the guiding-centre
quantum number m, um,i = ui, and one thus obtains the spin wave function of an
SU(4) ferromagnetism (Nomura and MacDonald, 2006; Goerbig, Douçot and Moessner, 2006;
Alicea and Fisher, 2006; Yang, Das Sarma and MacDonald, 2006). These arguments
may also be generalised to the case of νG = 0, where two branches are completely

7The filling factor νG = 1 is related to νG = −1 by particle-hole symmetry and therefore does not
require a separate discussion.
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filled (Yang, Das Sarma and MacDonald, 2006), but the ground state does not re-
veal the same degeneracy as the SU(4) ferromagnet at νG = ±1. Indeed, a gen-
eral argument on K-component quantum Hall system shows that one has gener-
alised ferromagnetic states at all integer values of the filling factor ν = 1, ...,K − 1
(Arovas, Karlhede and Lilliehöök, 1999).

As a consequence of the SU(4) quantum Hall ferromagnet, one may expect a quan-
tum Hall effect in graphene at the unusual filling factors νG = 0,±1. Remember that
these states do not belong to the series (3.22), νG = ±2,±4, ... of the RQHE which may
be explained by LL quantisation within the picture of non-interacting relativistic par-
ticles. In the same manner as for the spin quantum Hall ferromagnet, the gapless spin-
density-wave modes, which reveal a higher degeneracy due to the larger SU(4) sym-
metry, do not imply that the charged modes are also gapless. Indeed, the elementary
charged excitations of the SU(4) quantum Hall ferromagnet are generalised skyrmions
(Yang, Das Sarma and MacDonald, 2006; Douçot, Goerbig, Lederer and Moessner, 2008)
which are separated by a gap from the ground state, which therefore describes an in-
compressible quantum liquid that displays the quantum Hall effect. A quantum Hall ef-
fect has indeed been observed at these unusual filling factors (Zhang, Jiang, Small, Purewal, Tan, Fazlollahi, Chudow,
in agreement with the formation of an SU(4) quantum Hall ferromagnet. However,
there exist alternative scenarios to describe the appearance of a quantum Hall effect at
these filling factors (Gusynin, Miransky, Sharapov and Shovkovy, 2006; Fuchs and Lederer, 2007;
Herbut, 2007) and a clear indication of SU(4) quantum Hall ferromagnetism is yet
lacking.

We finally emphasise that an SU(4) description is not restricted to graphene. In-
deed, if one takes into account the electron spin, the bilayer quantum Hall system and
its excitations may also be treated within the SU(4) framework (Arovas, Karlhede and Lilliehöök, 1999;
Ezawa, 1999; Ezawa, 2000; Douçot, Goerbig, Lederer and Moessner, 2008) although
the interaction does not respect the full SU(4) symmetry because of the asymmetry
in the layer pseudo-spin described above.

5.3 Multi-Component Wave Functions

Until now, we have considered a multi-component quantum Hall effect at the integer
filling factor ν = 1 (or other integer fillings in the case of graphene) that is described
in terms of the Vandermonde determinant (4.7)

∏

k<l(zk − zl) regardless of whether
the particle at the position zk is in a state ↑ or ↓. The spin orientation has only been
taken into account within a spin wave function that is multiplied to the Vandermonde
determinant. One may naturally ask the question whether one may also describe other
filling factors than ν = 1.

A simple generalisation of the quantum Hall ferromagnetism to other filling factors
consists of replacing the Vandermonde determinant by, e.g., the Laughlin (4.3) at
ν = 1/(2s + 1) or the Jain wave function (4.30) at ν = p/(2sp + 1) and to multiply
it again with a spin wave function that is naturally ferromagnetic because the orbital
wave function remains anti-symmetric. There are, however, more general states for
which the orbital wave function is not fully anti-symmetric, but only in the intra-
component parts as it is required by the Pauli principle. These states are described in
terms of wave functions proposed by Halperin in 1983 (Halperin, 1983) that we present
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in this section, as well as a natural generalisation to systems with more components
than K = 2.

5.3.1 Halperin’s wave function

Halperin’s wave function for spin-1/2 electrons is a straight-forward generalisation of
Laughlin’s proposal (4.3). We consider the particle positions to be separated into two

sets {z↑1 , z↑2 , ..., z↑N↑
} for spin-↑ particles and {z↓1 , z↓2 , ..., z↓N↓

} for spin-↓ particles. If
the particles with different spin orientation could be treated as independent from one
another, i.e. in the absence of an interaction between spin-↑ and spin-↓ particles, one
would simply write down a product ansatz

ψL
↑,m1

({z↑j }) × ψL
↓,m2

({z↓j }) =

N↑
∏

k<l

(

z↑k − z↑l

)m1

N↓
∏

k<l

(

z↓k − z↓l

)m2

(5.7)

of two independent Laughlin wave functions that need not necessarily be described
by the same exponent m. The total filling factor would then be simply the sum ν =
ν↑ + ν↓ of the filling factors ν↑ = 1/m1 and ν↓ = 1/m2 for spin-↑ and spin-↓ particles,
respectively.

Apart from the fact that this situation is not particularly interesting, it is also
unphysical because the Coulomb interaction does not depend on the spin orientation of
the particle pairs. In the wave function (5.7), two particles of opposite spin orientation

may be at the same position, i.e. the wave function does not vanish in general for z↑k =

z↓l . Remember that such a double occupancy of the same position would be penalised
by an energy cost on the order of the short-range component v0 in a pseudopotential
expansion.

In order to account for these inter-component correlations, Halperin proposed to

add a factor
∏N↑

k=1

∏N↓

l=1(z
↑
k − z↓l )n to the wave function (5.7) the exponent of which

does not necessarily need to be odd because particles of opposite spin orientation are
not constrained by the Pauli principle. Halperin’s wave function

ψH
m1,m2,n({z↑j , z

↓
j }) =

N↑
∏

k<l

(

z↑k − z↑l

)m1

N↓
∏

k<l

(

z↓k − z↓l

)m2

N↑
∏

k=1

N↓
∏

l=1

(

z↑k − z↓l

)n

(5.8)

is therefore characterised by the set (m1,m2, n) of three exponents.
In analogy with Laughlin’s wave function, for which we have ν = 1/m, the ex-

ponents fix the (component) filling factors, as one may see from the power-counting
argument (see Sec. 4.2). According to this argument, the maximal exponent for a par-
ticular particle position cannot exceed the number of flux quanta NB threading the
area A of the 2D electron system. Apart from the shift that vanishes anyway in the
thermodynamic limit, one obtains the two equations

NB = m1N↑ + nN↓ and NB = m2N↓ + nN↑. (5.9)

This means that, contrary to the simpler case of Laughlin’s wave function, the number
of zeros in one component is not simply given by the corresponding exponent times the
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number of particles in this component (first term in the above expressions). Instead,
it is also affected by the particles in the other component that contribute each a zero
of order n (second term) due to the mixed term in Halperin’s wave function (5.8). In
terms of the component filling factors,

νσ =
Nσ

NB
, (5.10)

Eq. (5.9) may be rewritten in matrix form
(

1
1

)

=

(

m1 n
n m2

)(

ν↑
ν↓

)

, (5.11)

from which one obtains the component filling factors by matrix inversion
(

ν↑
ν↓

)

=
1

m1m2 − n2

(

m2 −n
−n m1

)(

1
1

)

, (5.12)

and one finds

ν = ν↑ + ν↓ =
m1 +m2 − 2n

m1m2 − n2
(5.13)

for the total filling factor.
One first notices that, in Eq. (5.12), not only the filling factors are fixed by the

exponents but also, for a given magnetic field (i.e. a given number of flux quanta), the
number of particles per component. Contrary to what one could have expected from
the expression of Halperin’s wave function (5.8), the numbers Nσ, namely the ratio
between them, cannot be chosen arbitrarily.

Furthermore, the above expressions (5.12) and (5.13) for the filling factors are ill-
defined if the exponent matrix in Eq. (5.11) is not invertible, i.e. when its determinant
is zero,m1m2−n2 = 0. The only physically relevant situation arises when all exponents
are equal odd integers m1 = m2 = n. However, this result should not surprise us: we
are then confronted again with a completely anti-symmetric wave function, actually a
Laughlin wave function, which requires a ferromagnetic spin wave function. As we have
seen above, in the discussion of the quantum Hall ferromagnetism, the ground-state
manifold comprises states with different polarisation along the z-axis: the state with
N↑ = N and N↓ = 0 is an equally valid ground state as a state with N↑ = N↓ = N/2
or N↑ = 0 and N↓ = N , where N = N↑ + N↓ is the total number of particles. The
component filling factor is therefore not well-defined and depends on the polarisation

pz =
N↑ −N↓

N
=
ν↑ − ν↓
ν

, (5.14)

whereas the total filling factor is simply given by ν = 1/m, in terms of the common
odd exponent m. Notice that contrary to the quantum Hall ferromagnet, a state with
an invertible exponent matrix has a polarisation that is completely fixed,

pz =
m2 −m1

m1m2 − n2
. (5.15)

We finally mention that not all states that can be written down in terms of
Halperin’s wave function are good candidates for the description of the ground state
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chosen by the system. One may show, e.g. within a generalisation of Laughlin’s plasma
analogy (presented in Sec. 4.2.5) to two or more components, that several of Halperin’s
wave functions do not describe a homogeneous liquid but a liquid in which the differ-
ent components phase-separate (de Gail, Regnault and Goerbig, 2008). For two com-
ponents, the condition for a homogeneous state is simply that both the exponents m1

and m2, which describe the intra-component correlations, must be larger than n for
the inter-component correlations. As an example, we may study the states (3, 3, 1) and
(1, 1, 3), which would both be candidates for a possible two-component FQHE at ν =
1/2 and which have indeed been investigated in the literature (MacDonald, Yoshioka and Girvin, 1989).
However, only the first one describes a homogeneous liquid, such that the second one
may be discarded right from the beginning.

Furthermore, some of Halperin’s wave functions, even if they satisfy the above-
mentioned condition, turn out to be problematic if the interaction is SU(2) symmet-
ric, such as for the true electron spin. In this case, one may show that (m,m, n)
states are only eigenstates of the total-spin operator, which commutes with the in-
teraction Hamiltonian, if n = m (i.e. in the ferromagnetic state) or if n = m − 1
(Prange and Girvin, 1990). This restriction may be omitted though in bilayer quan-
tum Hall systems or in wide quantum wells where the interaction Hamiltonian is not
pseudo-spin SU(2)-symmetric.

Physical relevance of Halperin states. A physically relevant Halperin state is e.g.
the unpolarised (3, 3, 2) state which would occur at a filling factor ν = 2/5. Re-
member from the discussion of CF theory in Sec. 4.4 that there is also a (natu-
rally polarised) CF candidate, with p = 2 completely filled CF LLs, to describe the
ground state at this filling factor. Which of them is now the better one? This ques-
tion could be answered within exact-diagonalisation calculations, which showed that,
in the absence of a Zeeman effect, the true ground state is described in terms of
the unpolarised Halperin wave function (3, 3, 2) (Chakraborty and Zhang, 1984). No-
tice, however, that the energy difference between the two states is extremely small,
as may be seen from variational calculations (Jain, 2007), such that the polarised
CF state becomes the ground state above a critical value of the energy ∆Z asso-
ciated with the Zeeman effect. This critical value would therefore describe a phase
transition between an unpolarised and a fully polarised FQHE state. Such transi-
tions have indeed been observed in polarisation experiments, where the strength of
the Zeeman effect was varied by a simultaneous change in the magnetic field and in
the electronic density (Kang, Young, Hannahs, Palm, Campman and Gossard, 1997;
Kukushkin, v. Klitzing and Eberl, 1999).

5.3.2 Generalised Halperin wave functions

We would finally mention that Halperin’s wave function may easily be generalised to
describe possible FQHE states in systems with a larger number of components, such
as the four spin-valley components in graphene. This generalised wave function for
K-component quantum Hall systems may be written as a product

ψSU(K)
m1,...,mK ;nij

({

z
(1)
j1
, z

(2)
j2
, ..., z

(K)
jK

})

= ψL
m1,...,mK

× ψinter
nij

(5.16)
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of a product of Laughlin wave functions

ψL
m1,...,mK

=

K
∏

j=1

Nj
∏

kj<lj

(

z
(j)
kj

− z
(j)
lj

)mj

for each of the components and a term

ψinter
nij

=

K
∏

i<j

Ni
∏

ki

Nj
∏

kj

(

z
(i)
ki

− z
(j)
kj

)nij

that takes into account the correlations between particles in different components
(Goerbig and Regnault, 2007). Here, the indices i and j denote the component, i, j =

1, ...,K, and z
(i)
ki

is the complex position of the ki-th particle in the component i.
Although the wave function (5.16) may seem scary at the first sight, it is as easily

manipulated as Halperin’s original wave function (5.8). The component filling factors
νj = Nj/NB may be determined, in the same manner as in the two-component case
(5.11), with the help of the “exponent matrix” M the off-diagonal terms of which
are the exponents (M)ij = nij (for i 6= j), whereas the diagonal terms are simply
the exponents corresponding to the intra-component correlations, (M)ii = mi. The
zero-counting argument yields the matrix equation







1
...
1






= M







ν1
...
νK






(5.17)

relating the component filling factors to the exponents, and if M is invertible, all
component filling factors are fixed by the inverse equation







ν1
...
νK






= M−1







1
...
1






. (5.18)

If the determinant det(M) is zero and the matrix thus not invertible, not all component
filling factors can be determined. In analogy with the two-component case this hints
at underlying ferromagnetic states. A perfect SU(K) ferromagnetic state is obtained
when all components are equal odd integers, mi = nij = m, in which case one obtains
again a simple (fully anti-symmetric) Laughlin wave function for all particles regardless
of to which component they belong. For K = 4 and m = 1, this is just the SU(4)
ferromagnetic state at ν = 1 which we have already discussed in the context of the
quantum Hall effect at νG = ±1 in graphene (Sec. 5.2.3).

Notice, however, that contrary to a two-component system, where one only needs
to distinguish between an invertible and a non-invertible matrix, the situation is much
richer for K > 2. One may indeed have different “degrees” of invertibility that are
described by the rank of the matrix. Consider, e.g., the fully anti-symmetric wave
function with mi = nij = m. In this case, Eq. (5.17) actually consists only of one
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single equation relating the component filling factors, i.e. 1 = m(ν1 + ...+ νK) = mν,
and all other lines of the matrix equation are simply copies of the first one. The rank of
this matrix is 1, i.e. only the total filling factor is fixed, ν = 1/m [SU(K) ferromagnet]
whereas in the case of an invertible matrix the rank is K and the K lines in the
matrix equation (5.17) represent (linearly) independent equations. If the rank of an
exponent matrix is smaller than K but larger than 1, the resulting state is neither a
full SU(K) ferromagnet nor a state with completely fixed component filling factors (or
polarisations) – it is rather a state with some intermediate ferromagnetic properties.

As for two-component Halperin wave functions (5.8), a generalisation of Laugh-
lin’s plasma analogy allows one to distinguish between physical (i.e. homogeneous)
and unphysical states (which show a phase separation of at least some of the compo-
nents). Indeed, the exponent matrix M must have only positive eigenvalues in order
to describe a homogeneous state (de Gail, Regnault and Goerbig, 2008).



Appendix A

Electronic Band Structure of
Graphene

In this appendix, we calculate the band structure of graphene in the tight-binding
model (Wallace, 1947), the results of which we have summarised in Sec. 1.2.3. Be-
cause graphene’s honeycomb lattice consists of two distinct sublattices A and B, the
electronic wave function

ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r), (A.1)

is a superposition of two wave functions, for the A and B sublattice, respectively, where

ak and bk are complex functions of the quasi-momentum k. Both ψ
(A)
k (r) and ψ

(B)
k (r)

are Bloch functions with

ψ
(j)
k (r) =

∑

Rl

eik·Rlφ(j)(r + δj − Rl), (A.2)

in terms of the atomic wave functions phi(j)(r + δj −Rl) centred around the position
Rl − δj , where δj is the vector which connects the sites Rl of the underlying Bravais
lattice with the site of the j atom within the unit cell. Typically one chooses the sites
of one of the sublattices, e.g. the A sublattice, to coincide with the sites of the Bravais
lattice such that δA = 0.

With the help of these wavefunctions, we may now search the solutions of the
Schrödinger equation

Hψk = ǫkψk,

where H is the full Hamiltonian for electrons on a lattice, which is of the type (2.2)
mentioned in Sec. 2.1. Here, we have chosen an arbitrary representation, which is not
necessarily that in real space.1 Multiplication of the Schrödinger equation by ψ∗

k from
the left yields the equation ψ∗

kHψk = ǫkψ
∗
kψk, which may be rewritten in matrix form

with the help of Eqs. (A.1) and (A.2)

(a∗k, b
∗
k)Hk

(

ak
bk

)

= ǫk (a∗k, b
∗
k)Sk

(

ak
bk

)

. (A.3)

Here, the Hamiltonian matrix is defined as

1The wavefunction ψk(r) is, thus, the real space representation of the Hilbert vector ψk.
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Fig. A.1 Tight-binding model for the honeycomb lattice.

Hk ≡
(

ψ
(A)∗
k Hψ

(A)
k ψ

(A)∗
k Hψ

(B)
k

ψ
(B)∗
k Hψ

(A)
k ψ

(B)∗
k Hψ

(B)
k

)

= H†
k, (A.4)

and the overlap matrix

Sk ≡
(

ψ
(A)∗
k ψ

(A)
k ψ

(A)∗
k ψ

(B)
k

ψ
(B)∗
k ψ

(A)
k ψ

(B)∗
k ψ

(B)
k

)

= S†
k (A.5)

accounts for the non-orthogonality of the trial wavefunctions. The eigenvalues ǫk of
the Schrödinger equation yield the energy bands, and they may be obtained from the
secular equation

det
[

Hk − ǫλkSk

]

= 0, (A.6)

which needs to be satisfied for a non-zero solution of the wavefunctions, i.e. for ak 6= 0
and bk 6= 0. The label λ denotes the energy bands, and it is clear that there are as
many energy bands as solutions of the secular equation (A.6), i.e. two bands for the
case of two atoms per unit cell.

From now on, we neglect the overlap of wave functions on neighbouring sites, such
that the overlap matrix (A.5) simply becomes the one matrix 1 times the number
of particles N due to the normalisation of the wave functions. The secular equation
then tells us that the energy bands are just the eigenvalues of the Hamiltonian matrix
(A.4). Furthermore, one notices that because the two sublattices are equivalent from

a chemical point of view, we have ψ
(A)∗
k Hψ

(A)
k = ψ

(B)∗
k Hψ

(B)
k , and the diagonal terms

therefore contribute just a constant shift to the band energies that we may set to
zero. The only relevant terms are then the off-diagonal terms in Eq. (A.4), HAB

k ≡
ψ

(A)∗
k Hψ

(B)
k = NtAB

k , with the hopping term

tAB
k ≡

∑

Rl

eik·Rl

∫

d2r φ(A)∗(r − Rk)HφB)(r + δAB − Rm) , (A.7)

where δAB is a vector that connects an A site to a B site.
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In order to obtain the basic band structure of graphene, it is sufficient to consider a
hopping only between nearest-neighbouring sites described by the hopping amplitude

t ≡
∫

d2r φA∗(r)HφB(r + δ3), (A.8)

where we have chosen δAB = δ3 (see Fig. A.1). Notice that one may also take
into account hopping to sites that are further away such as the next-nearest neigh-
bours which turn out to be on the same sublattice and which would thus yield di-
agonal terms to the Hamiltonian matrix. However, whereas we have t ∼ 3 eV, the
hopping amplitude for next-nearest-neighbour hopping is roughly 10 times smaller
(Castro Neto, Guinea, Peres, Novoselov and Geim, 2009) and only marginally affects
the low-energy properties of electrons in graphene.

If we now consider an arbitrary site A on the A sublattice (Fig. A.1), we may
see that the hopping term (A.7) consist of three terms corresponding to the nearest
neighbours B1, B2, and B3, all of which have the same hopping amplitude t. However,
only the site B3 is described by the same lattice vector (shifted by δ3) as the site A
and thus yields a zero phase to the hopping matrix. The sites B1 and B2 correspond
to lattice vectors shifted by

a2 =

√
3a

2
(ex +

√
3ey) and a3 ≡ a2 − a1 =

√
3a

2
(−ex +

√
3ey),

respectively, where a = |δ3| = 0.142 nm is the distance between nearest-neighbour
carbon atoms. Therefore, they contribute a phase factor exp(ik · a2) and exp(ik · a3),
respectively. The hopping term (A.7) may therefore be written as

tAB
k = tγ∗k =

(

tBA
k

)∗
,

where we have defined the sum of the nearest-neighbour phase factors

γk ≡ 1 + eik·a2 + eik·a3. (A.9)

The band dispersion may now easily be obtained by solving the secular equation
(A.6),

ǫλ(k) = λ
∣

∣tAB
k

∣

∣ = λt |γk| , (A.10)

and is plotted in Fig. 2.2. The band dispersion is obviously particle-hole symmetric,
and the valence band (λ = −) touches the conduction band (λ) in the inequivalent
points

±K = ± 4π

3
√

3a
ex ,

which one determines by setting γ±K = 0 and which coincide with the two inequivalent
BZ corners K and K ′. Because the whole band structure is half-filled in undoped
graphene, as we have mentioned in Sec. 2.1, the Fermi energy lies exactly in these
points K and K ′.
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The low-energy electronic properties may be obtained by expanding the band structure
in the vicinity of these points, and the low-energy Hamiltonian is obtained simply by
expanding the sum of the phase factors (A.9) around K and K ′,

γ±p ≡ γk=±K+p = 1 + e±iK·a2eip·a2 + e±iK·a3eip·a3

≃ 1 + e±i2π/3 [1 + ip · a2] + e∓i2π/3 [1 + ip · a3]

= γ±(0)
p + γ±(1)

p

By definition of the Dirac points and their position at the BZ corners K and K ′, we

have γ
±(0)
p = γ±K = 0. We limit the expansion to first order in |p|a. Notice that, in

order to simplify the notations, we have used a system of units with h̄ = 1, i.e. where
the momentum has the same units as the wave vector.

The first order term is given by

γ±(1)
p = i

√
3a

2

[

(px +
√

3py)e±i2π/3 + (−px +
√

3py)e∓i2π/3
]

= ∓3a

2
(px ± ipy), (A.11)

which is obtained with the help of sin(±2π/3) = ±
√

3/2 and cos(±2π/3) = −1/2.
This yields the effective low-energy Hamiltonian

Hξ
p = ξv(pxσ

x + ξpyσ
y), (A.12)

in terms of the Fermi velocity

v ≡ 3ta

2h̄
. (A.13)

The index ξ = ± denotes the valleys K and K ′, and one obtains at the K point the
Dirac Hamiltonian mentioned in (2.4)

HD = vp · σ , (A.14)

whereas the low-energy Hamiltonian at the K ′ point reads

H ′
D = −vp · σ∗ , (A.15)

with σ∗ = (σx,−σy). Both Hamiltonians yield the same energy spectrum which is
therefore two-fold valley-degenerate.

Notice that if one prefers to avoid the complex conjugation in the Hamiltonian
(A.15), one simply changes the representation by interchanging the A and B sublat-
tices, in which case one may write the Hamiltonians for the two valleys K (ξ = +)
and K ′ (ξ = −) in a compact form,

Hξ
D = ξHD = ξvp · σ . (A.16)



Appendix B

Landau Levels of Massive Dirac
Particles

Mass Confinement of Dirac Fermions at B = 0

Even in the absence of a magnetic field, electronic confinement in graphene turns out to
be quite tricky because a simple-minded approach in terms of a potential Vconf = V (y)1
cannot confine Dirac electrons. This fact is due to an intrinsically relativistic effect that
is called the Klein paradox, according to which a (massless) relativistic particle may
transverse a potential barrier without being backscattered (Klein, 1929). This effect
may be understood in the following manner: consider an incident electron in the region
with V = 0 the energy of which is slightly above the Fermi energy. In the potential
barrier, the Dirac point is shifted to a higher energy that corresponds to the barrier
height and the Fermi energy lies now in the valence band, where the electron may still
find a quantum state (with the same wave-vector direction and the same velocity v)
– instead of moving as an electron in the conduction band, it thus simply moves in
the same direction as an electron in the valence band [Fig. B.1(a)]. This is in stark
contrast with quantum mechanical tunneling of a non-relativistic particle, for which
the transmission probability through a potential barrier is exponentially suppressed
because of a lacking quantum state at the same energy as that of the incident electron.

The problem is circumvented by a so-called mass confinement

Vconf = V (y)σz =

(

V (y) 0
0 −V (y)

)

, (B.1)

and we discuss first the simpler case of a constant mass term Mσz that needs to be
added to the Dirac Hamiltonian. That this term yields indeed a mass may be seen
from the Dirac Hamiltonian at B = 0

Hm
D = vp · σ +Mσz =

(

M v(px − ipy)
v(px + ipy) −M

)

, (B.2)

the diagonalisation of which yields the energy spectrum

ǫλ(p) = λ
√

v2|p|2 +M2,

which is gapped at zero momentum. This is nothing other than the dispersion relation
of a relativistic particle1 with mass m such that M = mv2. Qualitatively one may see

1 The sign λ = − corresponds to the anti-particle.
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EF

electron in CB

electron

in VB

electron in CB

(a)

barrier

M(y)

(b)

Fig. B.1 (a) Klein tunneling through a barrier. An incident electron in the conduction band

(CB) above the Fermi energy, which is at the Dirac point before the barrier, transverses the

barrier as en electron above the Fermi energy in the valence band (VB). The valence band

is partially emptied because the Dirac point has shifted to a higher energy corresponding

to the barrier height. (b) Mass confinement. A gap opens when the particle approaches the

edge, which becomes a forbidden region where no quantum state can be found at the energy

corresponding to that of the incident electron.

from Fig. B.1(b) why a mass confinement is more efficient than a potential barrier.
Indeed, when the particle approaches the edge with M(y) 6= 0 a gap opens. An electron
slightly above the Dirac point may then only propagate in the region with M = 0,
whereas at the edge its energy lies in the gap which is a forbidden region, and the
electron is thus confined.

Similarly to the B = 0 case, one may find the energy spectrum of the massive
Dirac Hamiltonian (B.2) in a perpendicular magnetic field, which reads, in terms of
the ladder operators a and a†,

HB
D =

(

M v(Πx − iΠy)
v(Πx + iΠy) −M

)

=

(

M
√

2 h̄v
lB
a√

2 h̄v
lB
a† −M

)

. (B.3)

Its eigenvalues may be obtained in the same manner as in the M = 0 case (c.f. Sec.
2.3.2), and one obtains

ǫλn = λ

√

M2 + 2
h̄2v2

l2B
n (B.4)

for the massive relativistic LLs, n 6= 0.
Special care needs to be taken in the discussion of the central LL n = 0, which

necessarily shifts away from zero energy. The associated quantum state (2.24) is zero
in the first component u0, whereas the second component is given by v0 = |0〉. In order
to satisfy the second line in the eigenvalue equation

HB
Dψ0 = ǫ0ψ0 ⇔

(

M
√

2 h̄v
lB
a√

2 h̄v
lB
a† −M

)

(

0
|0〉

)

= ǫ0

(

0
|0〉

)

,

one needs to fulfil
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√
2
h̄v

lB
a† u0 = (ǫ0 +M)v0 ⇔ 0 = (ǫ0 +M)|0〉, (B.5)

such that the only solution is ǫ0 = −M . The relativistic n = 0 LL is therefore shifted
to negative energies and does no longer satisfy particle-hole symmetry. This effect is
called parity anomaly and depends on the sign of the mass.

In the case of graphene, we need to remember that there are two copies of the
energy spectrum, one at the K point and one at the K ′ point. As we have disussed
in Appendix A, the Hamiltonian (B.3) describes the low-energy properties at the K
point whereas we need to interchange the A and B sublattices at the K ′ point and
add a global sign in front of the off-diagonal terms [see Eq. (A.16)],

HB′
D =

(

−M −
√

2 h̄v
lB
a

−
√

2 h̄v
lB
a† M

)

= −HB′
D . (B.6)

Naturally, the eigenstates of this Hamiltonian are the same as those of the Hamiltonian
(B.3) at the K point, but the eigenvalues change their sign. Due to the particle-hole
symmetry of the levels (B.4), the global sign does not affect the energy spectrum for
n 6= 0. However, the n = 0 LL, which does not respect particle-hole symmetry, must
again be treated apart, and one finds in the same manner as for the K point the
condition corresponding to Eq. (B.5),

−
√

2
h̄v

lB
a† u0 = (ǫ0 −M)v0 ⇔ 0 = (ǫ0 −M)|0〉. (B.7)

One notices that the n = 0 LL level at the K ′ point shifts to positive energies as a
function of the mass, such that the overall level spectrum for graphene, when one takes
into account both valleys, is again particle-hole symmetric, but the valley degeneracy
is lifted for n = 0.

The case of a mass term that varies in the y-direction, such as for the mass con-
finement potential, may finally be treated in the same manner as we have discussed
in Sec. 3.1.2: the system remains translation-invariant in the x-direction, such that
the Landau gauge is the appropriate gauge and the wave vector k in this direction
is a good quantum number. Because this wave vector determines the position of the
eigenstate in the y-direction, y0 = kl2B, the energy spectrum is given by the expression
(3.21),

ǫλn,y0;ξ = λ

√

M2(y0) + 2
h̄2v2

l2B
n, (B.8)

for n 6= 0 and both valleys ξ = ±, whereas the n = 0 LL is found at

ǫn=0,y0;ξ = −ξM(y0). (B.9)
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R. A., Wiesendanger, R., and Morgenstern, M. (2008). Phys. Rev. Lett., 101, 256802.

Heinonen, O., Ed. (1998). Composite Fermions. World Scientific, Singapore.
Herbut, I. F. (2007). Phys. Rev. B , 75, 165411.
Huckestein, B. (1995). Rev. Mod. Phys., 67, 357.
Huckestein, B. and Backhaus, M. (1999). Phys. Rev. Lett., 82, 5100.
Iyengar, A., Wang, J., Fertig, H. A., and Brey, L. (2007). Phys. Rev. B , 75, 125430.
Jackson, J. D. (1999). Classical Electrondynamics. Wiley, 3rd ed., New York.
Jain, J. K. (1989). Phys. Rev. Lett., 63, 199.
Jain, J. K. (1990). Phys. Rev. B , 41, 7653.
Jain, J. K. (2007). Composite Fermions. Cambridge UP, Cambridge.
Jiang, Z., Henriksen, E. A., L. C. Tung, Y.-J. Wang, Schwartz, M. E., Han, M. Y.,
Kim, P., and Stormer, H. L. (2007). Phys. Rev. Lett., 98, 197403.

Kallin, C. and Halperin, B. I. (1984). Phys. Rev. B , 30, 5655.
Kang, W., Young, J. B., Hannahs, S. T., Palm, E., Campman, K. L., and Gossard,
A. C. (1997). Phys. Rev. B , 56, R12776.

Kellogg, M., Eisenstein, J. P., and an K. W. West, L. N. Pfeiffer (2004). Phys. Rev.
Lett., 036801.

Kitaev, A. Y. (2003). Ann. Phys. (N.Y.), 303, 2.
Kittel, C. (2005). Introduction to Solid State Physics. Wiley, 8th Ed., New York.
Klaß, U., Dietsche, W., v. Klitzing, K., and Ploog, K. (1991). Z. Phys. B:Cond.
Matt., 82, 351.

Klein, O. (1929). Z. Phys., 53, 157.
Kukushkin, I. K., v. Klitzing, K., and Eberl, K. (1999). Phys. Rev. Lett., 82, 3665.
Laughlin, R. B. (1983). Phys. Rev. Lett., 50, 1395.
Li, W., Csathy, A., Tsui, D. C., Pfeiffer, L. N., and West, K. W. (2005). Phys. Rev.
Lett., 94, 206807.



References 101
Li, W., Vicente, C. L., Xia, J. S., Pan, W., Tsui, D. C., Pfeiffer, L. N., and West,
K. W. (2009). Phys. Rev. Lett., 102, 216801.

Lopez, A. and Fradkin, E. (1991). Phys. Rev. B , 44, 5246.
Luhman, D. R., Pan, W., Tsui, D. C., Pfeiffer, L. N., Baldwin, K. W., and West,
K. W. (2008). Phys. Rev. Lett., 101, 266804.

MacDonald, A. H., Yoshioka, D., and Girvin, S. M. (1989). Phys. Rev. B , 39, 8044.
Mahan, G. D. (1993). Many-Particle Physics. Plenum Press, 2nd Ed., New York.
Mermin, N. D. (1979). Rev. Mod. Phys., 51, 591.
Moon, K., Mori, H., Yang, K., Girvin, S. M., MacDonald, A. H., Zheng, I., Yoshioka,
D., and Zhang, S.-C. (1995). Phys. Rev. B , 51, 5143.

Moore, G. and Read, N. (1991). Nucl. Phys. B , 360, 362.
Murthy, G. and Shankar, R. (2003). Rev. Mod. Phys., 75, 1101.
Nayak, Ch., Simon, S. H., Stern, A., Friedman, M., and Das Sarma, S. (2008). Rev.
Mod. Phys., 80, 1083.

Nomura, K. and MacDonald, A. H. (2006). Phys. Rev. Lett., 96, 256602.
Novoselov, K. S., Geim, A. K., Morosov, S. V., Jiang, D., Katsnelson, M. I., Grig-
orieva, I. V., Dubonos, S. V., and Firsov, A. A. (2005). Nature, 438, 197.

Pan, W., Stormer, H. L., Tsui, D. C., Pfeiffer, L. N., Baldwin, K. W., and West,
K. W. (2003). Phys. Rev. Lett., 90, 016801.

Papić, Z., Möller, G., Milovanović, M., Regnault, N., and Goerbig, M. O. (2009).
Phys. Rev. B , 79, 245327.

Poirier, W. and Schopfer, F. (2009a). Eur. Phys. J. Special Topics, 172, 207.
Poirier, W. and Schopfer, F. (2009b). Int. J. Mod. Phys. B , 23, 2779.
Prange, R. and Girvin, S. M., Eds. (1990). The Quantum Hall Effect. Springer, New
York.

Rezayi, E. H. and Read, N. (1994). Phys. Rev. Lett., 72, 100.
Roldán, R., Fuchs, J.-N., and Goerbig, M. O. (2009). Phys. Rev. B , 80, 085408.
Sachdev, S. (1999). Quantum Phase Transitions. Cambridge UP, Cambridge.
Sadowski, M. L., Martinez, G., Potemski, M., Berger, C., and de Heer, W. A. (2006).
Phys. Rev. Lett., 97, 266405.

Saminadayar, L., Glattli, D. C., Jin, Y., and Etienne, B. (1997). Phys. Rev. Lett., 79,
2526.

Shabani, J., Gokmen, T., and Shayegan, M. (2009). Phys. Rev. Lett., 103, 046805.
Shubnikov, L. W. and de Haas, W. J. (1930). Proceedings of the Royal Netherlands
Society of Arts and Science, 33, 130 and 163.

Slevin, K. and Ohtsuki, T. (2009). Phys. Rev. B , 80, 041304.
Sondhi, S. L., Girvin, S. M., Carini, J. P., and Shahar, D. (1997). Rev. Mod. Phys., 69,
315.

Sondhi, S. L., Karlhede, A., Kivelson, S. A., and Rezayi, E. H. (1993). Phys. Rev.
B , 47, 16419.

Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N., and West, K. W. (2000). Phys. Rev.
Lett., 84, 5808.

Tinkham, M. (2004). Introduction to Superconductivity. Dover Publications, 2nd Ed.,
Dover.

Tsui, D. C., Störmer, H., and Gossard, A. C. (1983). Phys. Rev. Lett., 48, 1559.



102 References

Tutuc, E., Shayegan, M., and Huse, D. A. (2004). Phys. Rev. Lett , 93, 036802.
v. Klitzing, K., Dorda, G., and Pepper, M. (1980). Phys. Rev. Lett., 45, 494.
Wallace, P. R. (1947). Phys. Rev., 71, 622.
Wei, H. P., Engel, L. W., and Tsui, D. C. (1994). Phys. Rev. B , 50, 14609.
Wei, H. P., Tsui, D. C., Paalanen, M. A., and Pruisken, A. M. M. (1988). Phys. Rev.
Lett., 61, 1294.

Wen, X.-G. and Zee, A. (1992). Phys. Rev. Lett , 69, 1811.
Wigner, E. (1934). Phys. Rev., 102, 46.
Willett, R. L., Eisenstein, J. P., Stormer, H. L., Tsui, D. C., Gossard, A. C., and
English, J. H. (1987). Phys. Rev. Lett., 59, 1776.

Wójs, A. and Quinn, J. J. (2000). Philos. Mag. B , 80, 1405.
Yang, K., Das Sarma, S., and MacDonald, A. H. (2006). Phys. Rev. B , 74, 075423.
Yoshioka, D. (2002). The Quantum Hall Effect. Springer, Berlin.
Zhang, Y., Jiang, Z., Small, J. P., Purewal, M. S., Tan, Y.-W., Fazlollahi, M., Chudow,
J. D., Jaszczak, J. A., Stormer, H. L., and Kim, P. (2006). Phys. Rev. Lett., 98,
197403.

Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P. (2005). Nature, 438, 201.



I I

R  ~  

56

2 3

41

R  ~  µ − µ = µ  − µ

3
µ − µ  = 0

2

35

L

H

2
µ  = µ

L 3µ  = µL

µ  = µ  = µ
6 5 R

R L



Density of states

B=9T
T=1.6K

∼ ν

∼ 1/ν

V  =15V
T=30mK

g



1 2 3 4 5

-4

-2

2

4 1 2 3 4 5

-4

-2

2

4
case ν=0

0
B

n=0

n=1

n=2
n=3
n=4

n=−1

n=−2
n=−3
n=−4

en
er

gy

magnetic field
����������������
����������������
����������������

����������������
����������������
����������������

completely
filled levels

half−filled central level



10 20 30 40 50 60 70 80

0.96

0.98

1.00

B

E

2L
3L

2L

3L

0L

1L

Be2cE1 ~
1L

1E

1E

A

B

C

D

B

E

2L
3L

2L

3L

0L

1L

Be2cE1 ~
1L

1E

1E

A

B

C

D

(D)
(C)

(B)

R
el

at
iv

e 
tra

ns
m

is
si

on

Energy (meV)

(A)

0.4 T
1.9 K



electron in CB

electron

in VB

electron in CB



1 2 3 4 5

-4

-2

2

4
case ν=0

0
B

n=0

n=1

n=2
n=3
n=4

n=−1

n=−2
n=−3
n=−4

en
er

gy

magnetic field
����������������
����������������
����������������

����������������
����������������
����������������

completely
filled levels

half−filled central level



10 20 30 40 50 60 70 80 90
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 

R
el

at
iv

e 
tra

ns
m

is
si

on

Energy (meV)

1 T

0.4T

2T
4T

10 20 30 40 50 60 70 80 90

0.99

1.00

0.7T

0.2T

0.3T

0.5T

  

 



0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60

70

80
 )(32 DLL
 )(23 DLL

 )(12 CLL
 )(21 CLL

 )(01 BLL
 )(10 BLL

 )(21 ALL

Tr
an

si
tio

n 
en

er
gy

 (m
eV

)

sqrt(B)



8 120 4
Magnetic Field B (T)

0

0.5

1.0

1.5

2.0

ρ
Ω

xx
(k

)

2/3 3/5

5/9

6/11

7/15

4/9

5/11

6/13

7/13

8/15

1 2/
3 2/

5/7

4/5

3 4/

Vx

Vy
Ix

4/7

5/3
4/3

8/5
7/5

123456




	Introduction
	History of the (Quantum) Hall Effect
	The physical system
	Classical Hall effect
	Shubnikov-de Haas effect
	Integer quantum Hall effect
	Fractional quantum Hall effect
	Relativistic quantum Hall effect in graphene

	Two-Dimensional Electron Systems
	Field-effect transistors
	Semiconductor heterostructures
	Graphene


	Landau Quantisation
	Basic One-Particle Hamiltonians for B=0
	Hamiltonian of a free particle
	Dirac Hamiltonian in graphene

	Hamiltonians for Non-Zero B Fields
	Minimal coupling and Peierls substitution
	Quantum mechanical treatment

	Landau Levels
	Non-relativistic Landau levels
	Relativistic Landau levels
	Level degeneracy
	Semi-classical interpretation of the level degeneracy

	Eigenstates
	Wave functions in the symmetric gauge
	Wave functions in the Landau gauge


	Integer Quantum Hall Effect
	Electronic Motion in an External Electrostatic Potential
	Semi-classical treatment
	Electrostatic potential with translation invariance in the x-direction

	Conductance of a Single Landau Level
	Edge states

	Two-terminal versus Six-Terminal Measurement
	Two-terminal measurement
	Six-terminal measurement

	The Integer Quantum Hall Effect and Percolation
	Extended and localised bulk states in an optical measurement
	Plateau transitions and scaling laws

	Relativistic Quantum Hall Effect in Graphene

	Strong Correlations and the Fractional Quantum Hall Effect
	The Role of Coulomb Interactions
	Laughlin's Theory
	Laughlin's guess from two-particle wave functions
	Haldane's pseudopotentials
	Quasi-particles and quasi-holes with fractional charge
	Experimental observation of fractionally charged quasi-particles
	Laughlin's plasma analogy

	Fractional Statistics
	Bosons, fermions and anyons -- an introduction
	Statistical properties of Laughlin quasi-particles

	Generalisations of Laughlin's Wave Function
	Composite Fermions
	Half-filled LLs and Pfaffian states


	Brief Overview of Multicomponent Quantum-Hall Systems
	The Different Multi-Component Systems
	The role of the electronic spin
	Graphene as a four-component quantum Hall system
	Bilayer quantum Hall systems
	Wide quantum wells

	The State at =1
	Quantum Hall ferromagnetism
	Exciton condensate in bilayer systems
	SU(4) ferromagnetism in graphene

	Multi-Component Wave Functions
	Halperin's wave function
	Generalised Halperin wave functions


	Appendix A Electronic Band Structure of Graphene
	Appendix B Landau Levels of Massive Dirac Particles
	References

