Topic 4: The Finite Potential Well

Outline:

- The quantum well
- The finite potential well (FPW)
- Even parity solutions of the TISE in the FPW
- Odd parity solutions of the TISE in the FPW
- Tunnelling into classically forbidded regions
- Comparison with the IPW

The AlGaAs-GaAs Quantum Well

The AlGaAs-GaAs Quantum Well

Example of a potential well:

Sandwich of GaAs and AlGaAs layers

The AlGaAs-GaAs Quantum Well

Example of a potential well:

Constrained motion along the x-axis; free motion in the y - z plane.

- $V_0 \rightarrow \infty$: 1-dimensional infinite potential well
- $V_0 < \infty$: 1-dimensional finite potential well

- I $E > V_0$ unbound states, total energy E continuous (not quantized)
- \blacksquare $E < V_0$ bound states, expect discrete states

I $E > V_0$ – unbound states, total energy E continuous (not quantized)

 \blacksquare $E < V_0$ – bound states, expect discrete states

Solve the TISE:

• $E > V_0$ – unbound states, total energy E continuous (not quantized) • $E < V_0$ – bound states, expect discrete states Solve the TISE:

$$\begin{array}{l} \bullet \quad -\frac{L}{2} \leq x \leq \frac{L}{2} \ \text{(Region I):} \\ \\ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E\psi(x) \ \Rightarrow \ \psi''(x) = -k^2 \psi(x) \ \boxed{k^2 = \frac{2mE}{\hbar^2} > 0} \\ \\ \text{solutions:} \ \psi_I(x) = A \sin kx + B \cos kx, \ \text{(as for the IPW)} \\ \\ A, B - \text{arbitrary constants} \end{array}$$

• $x > \frac{L}{2}$ (Region II):

Note: in region II $E = KE + PE = KE + V_0 < V_0 \implies KE < 0!$

•
$$x > \frac{L}{2}$$
 (Region II):

•
$$x > \frac{L}{2}$$
 (Region II):

Note: in region II $E = KE + PE = KE + V_0 < V_0 \Rightarrow KE < 0!$

$$egin{aligned} &-rac{\hbar^2}{2m}rac{d^2}{dx^2}\psi(x)+V_0\psi(x)=E\psi(x)\ &\Rightarrow \ \psi^{\prime\prime}(x)=lpha^2\psi(x) \end{aligned}$$

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

solutions $\psi_{II}(x) = Ce^{-\alpha x} + De^{\alpha x}$

C, D – arbitrary constants

 \Rightarrow put D = 0, otherwise $\psi(x)$ not square integrable (blows up at large +ve x)

•
$$x > \frac{L}{2}$$
 (Region II):

Note: in region II $E = KE + PE = KE + V_0 < V_0 \Rightarrow KE < 0!$ $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V_0\psi(x) = E\psi(x)$

 $\Rightarrow \psi^{\prime\prime}(x) = lpha^2 \psi(x)$

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

solutions $\psi_{II}(x) = Ce^{-\alpha x} + De^{\alpha x}$

C, D – arbitrary constants

 \Rightarrow put D = 0, otherwise $\psi(x)$ not square integrable (blows up at large +ve x)

•
$$x < -\frac{L}{2}$$
 (Region III):

solutions $\psi_{III}(x) = Fe^{-\alpha x} + Ge^{\alpha x}$ (like in region II)

 \Rightarrow put F = 0, otherwise $\psi(x)$ not square integrable (blows up at large -ve x)

F, G – arbitrary constants

The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states

- The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states
 - Consider even-parity solutions only: $\psi_I(x) = B \cos kx$

- The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states
- Consider even-parity solutions only: $\psi_I(x) = B \cos kx$

- The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states
- Consider even-parity solutions only: $\psi_I(x) = B \cos kx$

• ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \cos(kL/2) = C \exp(-\alpha L/2)$

- The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states
- Consider even-parity solutions only: $\psi_I(x) = B \cos kx$

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \cos(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow -Bk \sin(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider symmetric solutions only.

- The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states
- Consider even-parity solutions only: $\psi_I(x) = B \cos kx$

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \cos(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow -Bk \sin(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider symmetric solutions only.

• divide them side-by-side:
$$\Rightarrow ext{tan} rac{kL}{2} = rac{lpha}{k}$$

- The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states
- Consider even-parity solutions only: $\psi_I(x) = B \cos kx$

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \cos(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow -Bk \sin(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider symmetric solutions only.

• divide them side-by-side: $\Rightarrow \tan \frac{kL}{2} = \frac{\alpha}{k}$

introduce $\theta = \frac{kL}{2} \Rightarrow LHS: y(\theta) = \tan \theta$

• The potential is symmetric w.r.t. to $x = 0 \Rightarrow$ expect symmetric (even-parity) and antisymmetric (odd-parity) states

Consider even-parity solutions only: $\psi_I(x) = B \cos kx$

Apply general conditions on ψ at x = L/2:

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \cos(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow -Bk \sin(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider symmetric solutions only.

• divide them side-by-side: $\Rightarrow \tan \frac{kL}{2} = \frac{\alpha}{k}$

introduce $\theta = \frac{kL}{2} \Rightarrow$ LHS: $y(\theta) = \tan \theta$ and $\theta_0 = \frac{k_0L}{2} - \text{const.}$ where $k_0^2 = \frac{2mV_0}{\hbar^2} > 0$ \Rightarrow RHS: $y(\theta) = \frac{\alpha}{k} = \sqrt{\frac{k_0^2}{k^2} - 1} = \sqrt{\frac{V_0 - E}{E}} = \sqrt{\frac{\theta_0^2}{\theta^2} - 1}$ The even-parity solutions are determined when the curve $y = \tan \theta$ _intersects the curve $y = \frac{\alpha}{k}$. $\theta = \frac{kL}{2}$ _____

The even-parity solutions are determined when the curve $y = \tan \theta$ $\theta = \frac{kL}{2}$ intersects the curve $y = \frac{\alpha}{k}$. Even solutions 1/2 $\frac{\alpha}{k} = \left(\frac{\theta_0^2}{\theta^2} - 1\right)$ The intersection points determine \boldsymbol{k} and hence $E=\frac{\hbar^2 k^2}{2m}.$ $\tan \frac{kL}{2}$ $\frac{\alpha}{k}$ 0 $\theta = \frac{kL}{2}$ $\frac{3\pi}{2}$ $\hat{\theta}_{0}$ $\frac{\pi}{2}$ <u>2</u>π \overline{T}

The even-parity solutions are determined when the curve $y = tan \theta$ $\theta = \frac{kL}{2}$ intersects the curve $y = \frac{\alpha}{k}$. Even solutions 1/2 $\frac{\alpha}{k} = \left(\frac{\theta_0^2}{\theta^2} - 1\right)$ The intersection points determine k and hence $E=\frac{\hbar^2 k^2}{2m}.$ When $E \ll V_0$ $\Rightarrow \frac{\alpha}{k} = \sqrt{\frac{\theta_0^2}{\theta^2} - 1} \propto \frac{1}{\theta}$ $\tan \frac{kL}{2}$ $\frac{\alpha}{k}$ (solid line) 0 $\hat{\theta}_{0}$ $\frac{3\pi}{2}$ $\theta = \frac{kL}{2}$ $\frac{\pi}{2}$ <u>2</u>π \overline{T}

The even-parity solutions are determined when the curve $y = tan \theta$ $\theta = \frac{kL}{2}$ intersects the curve $y = \frac{\alpha}{k}$. Even solutions $\sqrt{\frac{\alpha}{k}} = \left(\frac{\theta_0^2}{\theta^2} - 1\right)$ The intersection points determine k and hence $E=\frac{\hbar^2 k^2}{2m}.$ When $E \ll V_0$ $\Rightarrow \frac{\alpha}{k} = \sqrt{\frac{\theta_0^2}{\theta^2} - 1} \propto \frac{1}{\theta}$ $\tan \frac{kL}{2}$ $\frac{\alpha}{k}$ (solid line) When $E \nearrow V_0$ 0 $\frac{3\pi}{2}$ θ_{0j} $\theta = \frac{kL}{2}$ $\frac{\pi}{2}$ *2π* $\Rightarrow \theta \nearrow \theta_0$ TT $\Rightarrow \frac{\alpha}{k} = \sqrt{\frac{\theta_0^2}{\theta^2} - 1} \searrow 0$ (dashed line)

The even-parity solutions are determined when the curve $y = \tan \theta$ $\theta = \frac{kL}{2}$ intersects the curve $y = \frac{\alpha}{k}$. Even solutions $\sqrt{\frac{\alpha}{k}} = \left(\frac{\theta_0^2}{\theta^2} - 1\right)^{1/2}$ The intersection points determine k and hence $E=\frac{\hbar^2 k^2}{2m}.$ When $E \ll V_0$ $\Rightarrow \frac{\alpha}{k} = \sqrt{\frac{\theta_0^2}{\theta^2} - 1} \propto \frac{1}{\theta}$ tan <u>kL</u> $\frac{\alpha}{k}$ (solid line) When $E \nearrow V_0$ 0 $\hat{\theta}_{0}$ $\frac{3\pi}{2}$ $\theta = \frac{kL}{2}$ $\frac{\pi}{2}$ *2π* π $\Rightarrow \theta \nearrow \theta_0$ $\Rightarrow \frac{\alpha}{k} = \sqrt{\frac{\theta_0^2}{\theta^2} - 1} \searrow 0$ (dashed line)

 \Rightarrow bound states with discrete (quantized) energy

Comments:

٩

larger $V_0 \Rightarrow$ more bound states; smaller $V_0 \Rightarrow$ less bound states

Comments:

- Iarger $V_0 \Rightarrow$ more bound states; smaller $V_0 \Rightarrow$ less bound states
- when $\theta_0 < \pi \Leftrightarrow V_0 < \frac{2\pi^2 \hbar^2}{mL^2}$ \Rightarrow only one symmetric state exists
- In the FPW there is always at least one bound state.

Even in a very shallow well ($V_0 \searrow 0$).

Comments:

- Iarger $V_0 \Rightarrow$ more bound states; smaller $V_0 \Rightarrow$ less bound states
- when $\theta_0 < \pi \Leftrightarrow V_0 < \frac{2\pi^2 \hbar^2}{mL^2}$ \Rightarrow only one symmetric state exists
- In the FPW there is always at least one bound state.

Even in a very shallow well ($V_0 \searrow 0$).

IPW: wavenumbers $k_n = \frac{n\pi}{L}$, or $\theta_n = \frac{n\pi}{2}$ (n = 1, 3, 5, ... for symmetric states).
The wavenumber and energy of the *n*th state is less than in the IPW.

Consider odd-parity solutions only: $\psi_I(x) = B \sin kx$

Consider odd-parity solutions only: $\psi_I(x) = B \sin kx$

Apply general conditions on ψ at x = L/2:

Consider odd-parity solutions only: $\psi_I(x) = B \sin kx$

Apply general conditions on ψ at x = L/2:

• ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \sin(kL/2) = C \exp(-\alpha L/2)$

Consider odd-parity solutions only: $\psi_I(x) = B \sin kx$

Apply general conditions on ψ at x = L/2:

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \sin(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow Bk \cos(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider antisymmetric solutions only.

Consider odd-parity solutions only: $\psi_I(x) = B \sin kx$

Apply general conditions on ψ at x = L/2:

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \sin(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow Bk \cos(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider antisymmetric solutions only.

• divide them side-by-side:
$$\Rightarrow \left| \cot \frac{kL}{2} = -\frac{\alpha}{k} \right|$$

Consider odd-parity solutions only: $\psi_I(x) = B \sin kx$

Apply general conditions on ψ at x = L/2:

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \sin(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow Bk \cos(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider antisymmetric solutions only.

• divide them side-by-side:
$$\Rightarrow \cot \frac{kL}{2} = -\frac{\alpha}{k}$$

(as before) introduce $\theta = \frac{kL}{2} \Rightarrow LHS: y(\theta) = \cot \theta$

Consider odd-parity solutions only: $\psi_I(x) = B \sin kx$

Apply general conditions on ψ at x = L/2:

- ψ continuous at x = L/2: $\Rightarrow \psi_I(L/2) = \psi_{II}(L/2)$ $\Rightarrow B \sin(kL/2) = C \exp(-\alpha L/2)$
- ψ' continuous at x = L/2: $\Rightarrow \psi'_I(L/2) = \psi'_{II}(L/2)$ $\Rightarrow Bk \cos(kL/2) = -C\alpha \exp(-\alpha L/2)$

No new constraints at x = -L/2 since we consider antisymmetric solutions only.

• divide them side-by-side:
$$\Rightarrow \cot \frac{kL}{2} = -\frac{\alpha}{k}$$

(as before) introduce $\theta = \frac{kL}{2} \Rightarrow LHS$: $y(\theta) = \cot \theta$ and $\theta_0 = \frac{k_0 L}{2} - \text{const.}$ where $k_0^2 = \frac{2mV_0}{\hbar^2} > 0$ $\Rightarrow \text{ RHS: } y(\theta) = -\frac{\alpha}{k} = -\sqrt{\frac{k_0^2}{k^2} - 1} = -\sqrt{\frac{\theta_0^2}{\theta^2} - 1}$ The odd-parity solutions are determined when the curve $y = \cot \theta$ _intersects the curve $y = -\frac{\alpha}{k}$. $\theta = \frac{kL}{2}$ _____

The odd-parity solutions are determined when the curve $y = \cot \theta$ $\theta = \frac{kL}{2}$ intersects the curve $y = -\frac{\alpha}{k}$. larger (smaller) $V_0 \Rightarrow \text{more (less)}$ Odd solutions bound states cot <u>kL</u> 0 $\frac{3\pi}{2}$ $\theta = \frac{kL}{2}$ $\frac{\pi}{2}$ 2π \overline{T} $\frac{\alpha}{k}$ $\int_{-\frac{\alpha}{k}} \frac{\alpha}{k} = -\left(\frac{\theta_0^2}{\theta^2} - 1\right)^{1/2}$

The odd-parity solutions are determined when the curve $y = \cot \theta$ _intersects the curve $y = -\frac{\alpha}{k}$.

- $heta = rac{kL}{2}$ Iarger (smaller) $V_0 \Rightarrow$ more (less) bound states
 - when $\theta_0 <$ $\frac{\pi}{2} \Leftrightarrow V_0 < \frac{\pi^2 \hbar^2}{2mL^2}$ \Rightarrow no antisymmetric state exists

The odd-parity solutions are determined when the curve $y = \cot \theta$ _intersects the curve $y = -\frac{\alpha}{k}$.

- $heta = rac{kL}{2}$ Iarger (smaller) $V_0 \Rightarrow$ more (less) bound states
- when $\theta_0 <$ $\frac{\pi}{2} \Leftrightarrow V_0 < \frac{\pi^2 \hbar^2}{2mL^2}$ \Rightarrow no antisymmetric state exists
- IPW: wavenumbers $k_n = \frac{n\pi}{L}$, or $\theta_n = \frac{n\pi}{2}$ (n = 2, 4, 6, ... forantisymmetric states). \Rightarrow The wavenumber and energy of the *n*th state is less than in the IPW. -

Compare the FPW and the IPW

Compare the FPW and the IPW

Infinite well:

 $k_n = \frac{n\pi}{L}$ infinite tower of states no unbound states

Finite well:

 $\psi(x)$ confined to the well $\psi(x)$ spreads out beyond the well k_n and energies lower finite tower of states unbound states when $E > V_0$

Compare the FPW and the IPW

Infinite well:

$$k_n = rac{n\pi}{L}$$

infinite tower of states

no unbound states

Finite well:

 $\psi(x)$ confined to the well $\psi(x)$ spreads out beyond the well k_n and energies lower finite tower of states unbound states when $E > V_0$

The energy levels in the FPW are lower because the wavefunction spreads out (by penetrating the classically forbidden region) and therefore reduces its KE.

At x>L/2 the wavefn $\psi(x)\propto e^{-\alpha x}$; at x<-L/2 the wavefn $\psi(x)\propto e^{\alpha x}$.

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

At x>L/2 the wavefn $\psi(x)\propto e^{-lpha x}$; at x<-L/2 the wavefn $\psi(x)\propto e^{lpha x}$.

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

 ${\color{black} {\scriptstyle extsf{ } \hspace{-.5ex} \hspace{-.5$

At x>L/2 the wavefn $\psi(x)\propto e^{-lpha x}$; at x<-L/2 the wavefn $\psi(x)\propto e^{lpha x}$.

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

- ${\color{black} {\scriptstyle extsf{ } \hspace{-.5ex} \hspace{-.5$
- ${\color{black} {oldsymbol{ \$}}}$ when $E \nearrow V_0 \, \Rightarrow \, lpha \searrow 0 \, \Rightarrow \, 1/lpha \nearrow \infty$

At x>L/2 the wavefn $\psi(x)\propto e^{-\alpha x}$; at x<-L/2 the wavefn $\psi(x)\propto e^{\alpha x}$.

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

- ${\color{black} {\scriptstyle extsf{ } \hspace{-.5ex} \hspace{-.5$
- when $E \nearrow V_0 \Rightarrow \alpha \searrow 0 \Rightarrow 1/\alpha \nearrow \infty$
- The depth of tunneling is determined by

 α – the penetration depth

At x>L/2 the wavefn $\psi(x)\propto e^{-\alpha x}$; at x<-L/2 the wavefn $\psi(x)\propto e^{\alpha x}$.

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

- The depth of tunneling is determined by

 α – the penetration depth

Non-zero wavefunction in classically forbidden regions (KE < 0!) is a purely quantum mechanical effect. It allows tunnelling between classically allowed regions.

At x>L/2 the wavefn $\psi(x)\propto e^{-\alpha x}$; at x<-L/2 the wavefn $\psi(x)\propto e^{\alpha x}$.

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

- ${\color{red} {ullet} \hspace{0.1cm} }$ when $V_0 \nearrow \infty \, \Rightarrow \, lpha \nearrow lpha \gg \, 1/lpha \searrow 0$
- The depth of tunneling is determined by

 α – the penetration depth

- Non-zero wavefunction in classically forbidden regions (KE < 0!) is a purely quantum mechanical effect. It allows tunnelling between classically allowed regions.
- It follows from requiring that both $\psi(x)$ and $\psi'(x)$ are continuous!

At x>L/2 the wavefn $\psi(x)\propto e^{-\alpha x}$; at x<-L/2 the wavefn $\psi(x)\propto e^{\alpha x}$.

$$lpha^2=rac{2m(V_0-E)}{\hbar^2}>0$$

- The depth of tunneling is determined by

 α – the penetration depth

- Non-zero wavefunction in classically forbidden regions (KE < 0!) is a purely quantum mechanical effect. It allows tunnelling between classically allowed regions.
- It follows from requiring that both $\psi(x)$ and $\psi'(x)$ are continuous! \Rightarrow Requiring a "reasonable behaviour" of the wavefunction leads to a (classically) "crazy" phenomenon of tunnelling

Some general properties:

Some general properties:

- quantum (discrete) energy states are a typical property of any well-type potential
- In the corresponding wavefunctions (and probability) are mostly confined inside the potential but exhibit non-zero "tails" in the classically forbidden regions of KE < 0

Except when $V(x) \rightarrow \infty$ where the tails are not allowed.

Some general properties:

- quantum (discrete) energy states are a typical property of any well-type potential
- In the corresponding wavefunctions (and probability) are mostly confined inside the potential but exhibit non-zero "tails" in the classically forbidden regions of KE < 0

Except when $V(x) \rightarrow \infty$ where the tails are not allowed.

both properties result from requiring the wavefunction $\psi(x)$ and its derivative $\psi'(x)$ to be continuous everywhere

Except when $V(x) \to \infty$ where $\psi'(x)$ is not continuous.

Some general properties:

- quantum (discrete) energy states are a typical property of any well-type potential
- In the corresponding wavefunctions (and probability) are mostly confined inside the potential but exhibit non-zero "tails" in the classically forbidden regions of KE < 0

Except when $V(x) \rightarrow \infty$ where the tails are not allowed.

both properties result from requiring the wavefunction $\psi(x)$ and its derivative $\psi'(x)$ to be continuous everywhere

Except when $V(x) \to \infty$ where $\psi'(x)$ is not continuous.

• quantum states in symmetric potentials (w.r.t. reflections $x \rightarrow -x$) are either symmetric (i.e., even parity), with an even number of nodes, or else antisymmetric (i.e., odd parity), with an odd number of nodes

A consequence of the HUP.

A consequence of the HUP.

the wider and/or more shallow the potential, the lower the energies of the quantum states

A consequence of the HUP.

A consequence of the HUP.

the wider and/or more shallow the potential, the lower the energies of the quantum states

A consequence of the HUP.

inside FPW-type of potentials the number of quantum states is finite

A consequence of the HUP.

the wider and/or more shallow the potential, the lower the energies of the quantum states

A consequence of the HUP.

- inside FPW-type of potentials the number of quantum states is finite
- when the total energy E is larger than the height of the potential, the energy becomes continuous, i.e., we have continuous states

A consequence of the HUP.

the wider and/or more shallow the potential, the lower the energies of the quantum states

A consequence of the HUP.

- inside FPW-type of potentials the number of quantum states is finite
- when the total energy E is larger than the height of the potential, the energy becomes continuous, i.e., we have continuous states
- when V = V(x), both bound and continuous states are stationary, i.e, the time-dependent wavefunctions are of the form $\Psi(x,t) = \psi(x) \exp\left(-\frac{i}{\hbar}Et\right)$