
Topic 4: The Finite Potential Well

Outline:

The quantum well

The finite potential well (FPW)

Even parity solutions of the TISE in the FPW

Odd parity solutions of the TISE in the FPW

Tunnelling into classically forbidded regions

Comparison with the IPW
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The AlGaAs-GaAs QuantumWell
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The AlGaAs-GaAs QuantumWell
Example of a potential well:

Sandwich of GaAs
and AlGaAs layers
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The AlGaAs-GaAs QuantumWell
Example of a potential well:

Sandwich of GaAs
and AlGaAs layers

Constrained motion along the x-axis; free motion in the y − z plane.

V0 → ∞: 1-dimensional infinite potential well

V0 < ∞: 1-dimensional finite potential well
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The Finite Potential Well
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The Finite Potential Well
Consider a particle in the potential

V (x) =















V0 x < −L
2

0 −L
2

≤ x ≤ L
2

V0 x > L
2

V0 > 0
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The Finite Potential Well
Consider a particle in the potential

V (x) =















V0 x < −L
2

0 −L
2

≤ x ≤ L
2

V0 x > L
2

V0 > 0

E > V0 – unbound states, total energy E continuous (not quantized)

E < V0 – bound states, expect discrete states

Solve the TISE:

−L
2

≤ x ≤ L
2
(Region I):

− !
2

2m
d2

dx2 ψ(x) = Eψ(x) ⇒ ψ′′(x) = −k2ψ(x) k2 = 2mE
!2 > 0

solutions: ψI(x) = A sin kx + B cos kx, (as for the IPW)
A, B – arbitrary constants
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x > L
2
(Region II):

Note: in region II E = KE + PE = KE + V0 < V0 ⇒ KE < 0!
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x > L
2
(Region II):

Note: in region II E = KE + PE = KE + V0 < V0 ⇒ KE < 0!

− !
2

2m
d2

dx2 ψ(x) + V0ψ(x) = Eψ(x)

⇒ ψ′′(x) = α2ψ(x) α2 = 2m(V0−E)
!2 > 0
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x > L
2
(Region II):

Note: in region II E = KE + PE = KE + V0 < V0 ⇒ KE < 0!

− !
2

2m
d2

dx2 ψ(x) + V0ψ(x) = Eψ(x)

⇒ ψ′′(x) = α2ψ(x) α2 = 2m(V0−E)
!2 > 0

solutions ψII(x) = Ce−αx + Deαx

C, D – arbitrary constants

⇒ put D = 0, otherwise ψ(x) not square integrable (blows up at
large +ve x)
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x > L
2
(Region II):

Note: in region II E = KE + PE = KE + V0 < V0 ⇒ KE < 0!

− !
2

2m
d2

dx2 ψ(x) + V0ψ(x) = Eψ(x)

⇒ ψ′′(x) = α2ψ(x) α2 = 2m(V0−E)
!2 > 0

solutions ψII(x) = Ce−αx + Deαx

C, D – arbitrary constants

⇒ put D = 0, otherwise ψ(x) not square integrable (blows up at
large +ve x)

x < −L
2
(Region III):

solutions ψIII(x) = Fe−αx + Geαx (like in region II)
F,G – arbitrary constants

⇒ put F = 0, otherwise ψ(x) not square integrable (blows up at
large -ve x)
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The potential is symmetric w.r.t. to x = 0 ⇒ expect symmetric
(even-parity) and antisymmetric (odd-parity) states
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⇒ B cos (kL/2) = C exp (−αL/2)

ψ′ continuous at x = L/2: ⇒ ψ′
I(L/2) = ψ′

II(L/2)

⇒ −Bk sin (kL/2) = −Cα exp (−αL/2)

No new constraints at x = −L/2 since we consider symmetric solutions only.
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The potential is symmetric w.r.t. to x = 0 ⇒ expect symmetric
(even-parity) and antisymmetric (odd-parity) states

Consider even-parity solutions only: ψI(x) = B cos kx

Apply general conditions on ψ at x = L/2:

ψ continuous at x = L/2: ⇒ ψI(L/2) = ψII(L/2)

⇒ B cos (kL/2) = C exp (−αL/2)

ψ′ continuous at x = L/2: ⇒ ψ′
I(L/2) = ψ′

II(L/2)

⇒ −Bk sin (kL/2) = −Cα exp (−αL/2)

No new constraints at x = −L/2 since we consider symmetric solutions only.

divide them side-by-side: ⇒ tan kL
2

= α
k

introduce θ = kL
2

⇒ LHS: y(θ) = tan θ

and θ0 = k0L
2

– const. where k2
0 = 2mV0

!2 > 0

⇒ RHS: y(θ) = α
k

=
√

k2
0

k2 − 1 =
√

V0−E
E

=
√

θ2
0

θ2 − 1
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The even-parity solutions are determined when the curve y = tan θ

intersects the curve y = α
k
. θ = kL

2
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The even-parity solutions are determined when the curve y = tan θ

intersects the curve y = α
k
. θ = kL

2

The intersection points
determine k and hence
E = !

2k2

2m .
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The even-parity solutions are determined when the curve y = tan θ

intersects the curve y = α
k
. θ = kL

2

The intersection points
determine k and hence
E = !

2k2

2m .

When E # V0

⇒ α
k =

r

θ2
0

θ2 − 1 ∝ 1

θ

(solid line)
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The even-parity solutions are determined when the curve y = tan θ

intersects the curve y = α
k
. θ = kL

2

The intersection points
determine k and hence
E = !

2k2

2m .

When E # V0

⇒ α
k =

r

θ2
0

θ2 − 1 ∝ 1

θ

(solid line)

When E ↗ V0

⇒ θ ↗ θ0

⇒ α
k =

r

θ2
0

θ2 − 1 ↘ 0

(dashed line)
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The even-parity solutions are determined when the curve y = tan θ

intersects the curve y = α
k
. θ = kL

2

The intersection points
determine k and hence
E = !

2k2

2m .

When E # V0

⇒ α
k =

r

θ2
0

θ2 − 1 ∝ 1

θ

(solid line)

When E ↗ V0

⇒ θ ↗ θ0

⇒ α
k =

r

θ2
0

θ2 − 1 ↘ 0

(dashed line)

⇒ bound states with discrete (quantized) energy
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Comments:

larger V0 ⇒ more bound states;
smaller V0 ⇒ less bound states
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Comments:

larger V0 ⇒ more bound states;
smaller V0 ⇒ less bound states

when θ0 < π ⇔ V0 < 2π2
!
2

mL2

⇒ only one symmetric state exists

⇒ In the FPW there is always at least
one bound state.

Even in a very shallow well (V0 ↘ 0).
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Comments:

larger V0 ⇒ more bound states;
smaller V0 ⇒ less bound states

when θ0 < π ⇔ V0 < 2π2
!
2

mL2

⇒ only one symmetric state exists

⇒ In the FPW there is always at least
one bound state.

Even in a very shallow well (V0 ↘ 0).

IPW: wavenumbers kn = nπ
L , or θn = nπ

2

(n = 1,3,5, ... for symmetric states).
⇒ The wavenumber and energy of the nth state is less than in the
IPW.
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The FPW – odd-parity solutions
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Consider odd-parity solutions only: ψI(x) = B sin kx
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The FPW – odd-parity solutions
Consider odd-parity solutions only: ψI(x) = B sin kx

Apply general conditions on ψ at x = L/2:

ψ continuous at x = L/2: ⇒ ψI(L/2) = ψII(L/2)

⇒ B sin (kL/2) = C exp (−αL/2)
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No new constraints at x = −L/2 since we consider antisymmetric solutions only.

divide them side-by-side: ⇒ cot kL
2

= −α
k

(as before) introduce θ = kL
2

⇒ LHS: y(θ) = cot θ

and θ0 = k0L
2

– const. where k2
0 = 2mV0

!2 > 0

⇒ RHS: y(θ) = −α
k

= −
√

k2
0

k2 − 1 = −
√

θ2
0

θ2 − 1
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The odd-parity solutions are determined when the curve y = cot θ

intersects the curve y = −α
k
. θ = kL

2

QM PHY202 – p. 25



The odd-parity solutions are determined when the curve y = cot θ

intersects the curve y = −α
k
. θ = kL

2
larger (smaller)
V0 ⇒ more (less)
bound states
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The odd-parity solutions are determined when the curve y = cot θ

intersects the curve y = −α
k
. θ = kL

2
larger (smaller)
V0 ⇒ more (less)
bound states

when θ0 <
π
2

⇔ V0 < π2
!
2

2mL2

⇒ no antisymmetric
state exists
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The odd-parity solutions are determined when the curve y = cot θ

intersects the curve y = −α
k
. θ = kL

2
larger (smaller)
V0 ⇒ more (less)
bound states

when θ0 <
π
2

⇔ V0 < π2
!
2

2mL2

⇒ no antisymmetric
state exists
IPW: wavenumbers
kn = nπ

L , or θn = nπ
2

(n = 2,4,6, ... for
antisymmetric states).
⇒ The
wavenumber and
energy of the nth
state is less than in
the IPW.
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Compare the FPW and the IPW
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Compare the FPW and the IPW

Infinite well: Finite well:
ψ(x) confined to the well ψ(x) spreads out beyond the well
kn = nπ

L kn and energies lower
infinite tower of states finite tower of states
no unbound states unbound states when E > V0
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Compare the FPW and the IPW

Infinite well: Finite well:
ψ(x) confined to the well ψ(x) spreads out beyond the well
kn = nπ

L kn and energies lower
infinite tower of states finite tower of states
no unbound states unbound states when E > V0

The energy levels in the FPW are lower because the wavefunction spreads out (by
penetrating the classically forbidden region) and therefore reduces its KE.
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Quantum Tunnelling
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Quantum Tunnelling

At x > L/2 the wavefn ψ(x) ∝ e−αx;
at x < −L/2 the wavefn ψ(x) ∝ eαx. α2 = 2m(V0−E)

!2 > 0
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The depth of tunneling is determined by

α – the penetration depth
Non-zero wavefunction in classically forbidden regions (KE < 0!) is
a purely quantum mechanical effect. It allows tunnelling between
classically allowed regions.
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Quantum Tunnelling

At x > L/2 the wavefn ψ(x) ∝ e−αx;
at x < −L/2 the wavefn ψ(x) ∝ eαx. α2 = 2m(V0−E)

!2 > 0

when V0 ↗ ∞ ⇒ α ↗ ∞ ⇒ 1/α ↘ 0

when E ↗ V0 ⇒ α ↘ 0 ⇒ 1/α ↗ ∞

The depth of tunneling is determined by

α – the penetration depth
Non-zero wavefunction in classically forbidden regions (KE < 0!) is
a purely quantum mechanical effect. It allows tunnelling between
classically allowed regions.

It follows from requiring that both ψ(x) and ψ′(x) are continuous!
⇒ Requiring a “reasonable behaviour” of the wavefunction leads to
a (classically) “crazy” phenomenon of tunnelling
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Quantum states in potential wells
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Quantum states in potential wells
Some general properties:
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Quantum states in potential wells
Some general properties:

quantum (discrete) energy states are a typical property of any
well-type potential

the corresponding wavefunctions (and probability) are mostly
confined inside the potential but exhibit non-zero “tails” in the
classically forbidden regions of KE < 0

Except when V (x) → ∞where the tails are not allowed.
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Quantum states in potential wells
Some general properties:

quantum (discrete) energy states are a typical property of any
well-type potential

the corresponding wavefunctions (and probability) are mostly
confined inside the potential but exhibit non-zero “tails” in the
classically forbidden regions of KE < 0

Except when V (x) → ∞where the tails are not allowed.

both properties result from requiring the wavefunction ψ(x) and its
derivative ψ′(x) to be continuous everywhere

Except when V (x) → ∞where ψ′(x) is not continuous.

quantum states in symmetric potentials (w.r.t. reflections x → −x)
are either symmetric (i.e., even parity), with an even number of
nodes, or else antisymmetric (i.e, odd parity), with an odd number of
nodes
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the lowest energy state (ground state) is always above the bottom of
the potential and is symmetric

A consequence of the HUP.
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the lowest energy state (ground state) is always above the bottom of
the potential and is symmetric

A consequence of the HUP.

the wider and/or more shallow the potential, the lower the energies of
the quantum states

A consequence of the HUP.

inside FPW-type of potentials the number of quantum states is finite

when the total energy E is larger than the height of the potential, the
energy becomes continuous, i.e., we have continuous states

when V = V (x), both bound and continuous states are stationary,
i.e, the time-dependent wavefunctions are of the form
Ψ(x, t) = ψ(x) exp

(

− i
!
Et

)
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